Quasi-periodic solutions for the general semilinear Duffing equations with asymmetric nonlinearity and oscillating potential

被引:4
作者
Zhang, Xinli [1 ,2 ]
Peng, Yaqun [1 ]
Piao, Daxiong [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金;
关键词
quasi-periodic solutions; asymmetric oscillator; Littlewood’ s boundedness problem; invariant curves; BOUNDEDNESS;
D O I
10.1007/s11425-018-9491-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of quasi-periodic solutions and boundeness of all solutions of the general semilinear quasi-periodic differential equation x '' + ax(+) - bx(-) = G(x)(x, t) + f(t), where x(+) = max{x, 0}, x(-) = max{ - x, 0}, a and b are two different positive constants, f(t) is C39 is bounded for 0 <= i + j <= 35.
引用
收藏
页码:931 / 946
页数:16
相关论文
共 14 条
[1]   Roots of unity and unbounded motions of an asymmetric oscillator [J].
Alonso, JM ;
Ortega, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :201-220
[3]  
Fabry C, 2000, ELECT J DIFFERENTIAL, V74, P283
[4]  
Fucik S., 1980, Solvability of Nonlinear Equations and Boundary Value Problems
[5]   RESONANCE FOR JUMPING NONLINEARITIES [J].
GALLOUET, T ;
KAVIAN, O .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (03) :325-342
[6]   JUMPING NONLINEARITIES FOR NEUMANN BVPS WITH POSITIVE FORCING [J].
HABETS, P ;
RAMOS, M ;
SANCHEZ, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (05) :533-549
[7]   Quasi-periodic solutions for an asymmetric oscillation [J].
Huang, Peng ;
Li, Xiong ;
Liu, Bin .
NONLINEARITY, 2016, 29 (10) :3006-3030
[8]   Boundedness for the general semilinear Duffing equations via the twist theorem [J].
Jiao, Lei ;
Piao, Daxiong ;
Wang, Yiqian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) :91-113
[9]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578
[10]   A SEMI-FREDHOLM PRINCIPLE FOR PERIODICALLY FORCED SYSTEMS WITH HOMOGENEOUS NONLINEARITIES [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (01) :119-125