On a new class of identifying codes in graphs

被引:21
作者
Honkala, Iiro [1 ]
Laihonen, Tero [1 ]
机构
[1] Univ Turku, Dept Math, Turku 20014, Finland
基金
芬兰科学院;
关键词
fault tolerance; parallel processing; identification; optimal code;
D O I
10.1016/j.ipl.2006.11.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Assume that G = (V, E) is an undirected graph, and C subset of V. For every v is an element of V, we denote I-r(v) = {u is an element of C: d(u, v) <= r}, where d(u, v) denotes the number of edges on any shortest path from u to v. For every F subset of V, we denote I-r(F) = boolean OR(v is an element of F) I-r(v). We study codes C with the property that if I-r(F) = I-r(F') and F not equal F', then both F and F' have size at least l + 1. Such codes can be used in the maintenance of multiprocessor architectures. We consider the cases when G is the infinite square or king grid, infinite triangular lattice or hexagonal mesh, or a binary hypercube. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 98
页数:7
相关论文
共 23 条
[1]  
[Anonymous], THESIS U GRENOBLE FR
[2]   The minimum density of an identifying code in the king lattice [J].
Charon, I ;
Honkala, I ;
Hudry, O ;
Lobstein, A .
DISCRETE MATHEMATICS, 2004, 276 (1-3) :95-109
[3]  
Charon I., 2001, ELECTRON J COMB, V8, pR39
[4]  
Charon I, 2002, ELECTRON J COMB, V9
[5]  
Cohen G., 1999, ELECT J COMBIN, V6
[6]  
Cohen G, 1997, COVERING CODES
[7]   Bounds for codes identifying vertices in the hexagonal grid [J].
Cohen, GD ;
Honkala, I ;
Lobstein, A ;
Zémor, G .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (04) :492-504
[8]   On codes identifying vertices in the two-dimensional square lattice with diagonals [J].
Cohen, GD ;
Honkala, I ;
Lobstein, A ;
Zémor, G .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (02) :174-176
[9]   Exact minimum density of codes identifying vertices in the square grid [J].
Haim, YB ;
Litsyn, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) :69-82
[10]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT