The last few decades have seen a significant decline in Arctic sea ice, generating concerns about both its causes and its longer-term implications. In this paper, we introduce an empirical technique to examine the dynamics of Arctic sea ice extent. Using quantile autoregression, we find that the negative effect of atmospheric CO2 is stronger in the upper tail of the ice distribution. We also document that Arctic sea ice dynamics have become more unstable over the last three decades, especially during the summer. The rising summer instability occurs across quantiles, indicating that it is due to the joint effects of rising atmospheric CO2 and nonlinear feedbacks (and not due to outside shocks). While we do not find evidence of "critical slowing", we see the increasing instability as a cause for concern. We also use the model to predict the evolution of Arctic sea ice extent under alternative CO2 concentration scenarios.