Random k-Body Ensembles for Chaos and Thermalization in Isolated Systems

被引:9
作者
Kota, Venkata Krishna Brahmam [1 ]
Chavda, Narendra D. [2 ]
机构
[1] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Dept Appl Phys, Fac Engn & Technol, Vadodara 390001, India
来源
ENTROPY | 2018年 / 20卷 / 07期
关键词
embedded ensembles; k-body interactions; lie algebras; fermions; bosons; thermalization; fidelity; q-hermite polynomials; EMBEDDED GAUSSIAN ENSEMBLES; FERMION-FERMION MODEL; RANDOM MATRICES; QUANTUM CHAOS; STATISTICAL-MECHANICS; SPECTRAL PROPERTIES; UNITARY ENSEMBLE; DISTRIBUTIONS; EQUILIBRIUM; TRANSITION;
D O I
10.3390/e20070541
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Embedded ensembles or random matrix ensembles generated by k-body interactions acting in many-particle spaces are now well established to be paradigmatic models for many-body chaos and thermalization in isolated finite quantum (fermion or boson) systems. In this article, briefly discussed are (i) various embedded ensembles with Lie algebraic symmetries for fermion and boson systems and their extensions (for Majorana fermions, with point group symmetries etc.); (ii) results generated by these ensembles for various aspects of chaos, thermalization and statistical relaxation, including the role of q-hermite polynomials in k-body ensembles; and (iii) analyses of numerical and experimental data for level fluctuations for trapped boson systems and results for statistical relaxation and decoherence in these systems with close relations to results from embedded ensembles.
引用
收藏
页数:22
相关论文
共 98 条
[21]   Thermalization in one- plus two-body ensembles for dense interacting boson systems [J].
Chavda, N. D. ;
Kota, V. K. B. ;
Potbhare, V. .
PHYSICS LETTERS A, 2012, 376 (45) :2972-2976
[22]   AN EXAMPLE OF CHAOTIC EIGENSTATES IN A COMPLEX ATOM [J].
CHIRIKOV, BV .
PHYSICS LETTERS A, 1985, 108 (02) :68-70
[23]   Black holes and random matrices [J].
Cotler, Jordan S. ;
Gur-Ari, Guy ;
Hanada, Masanori ;
Polchinski, Joseph ;
Saad, Phil ;
Shenker, Stephen H. ;
Stanford, Douglas ;
Streicher, Alexandre ;
Tezuka, Masaki .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05)
[24]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362
[25]   Two mode theory of Bose-Einstein condensates: interferometry and the Josephson model [J].
Dalton, B. J. ;
Ghanbari, S. .
JOURNAL OF MODERN OPTICS, 2012, 59 (04) :287-353
[26]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[27]   CORRESPONDENCE BETWEEN THE SU(3)CIRCLE-TIMES-U(2) LIMIT OF IBF(2)M AND 2 QUASI-PARTICLE NILSSON CONFIGURATIONS [J].
DEVI, YD ;
KOTA, VKB .
PHYSICS LETTERS B, 1994, 334 (3-4) :253-258
[28]   Phase Transition in the Density of States of Quantum Spin Glasses [J].
Erdos, Laszlo ;
Schroeder, Dominik .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) :441-464
[29]   Spectral analysis of two-dimensional Bose-Hubbard models [J].
Fischer, David ;
Hoffmann, Darius ;
Wimberger, Sandro .
PHYSICAL REVIEW A, 2016, 93 (04)
[30]   Quantum chaos in many-body systems: what can we learn from the Ce atom? [J].
Flambaum, VV ;
Gribakina, AA ;
Gribakin, GF ;
Ponomarev, IV .
PHYSICA D, 1999, 131 (1-4) :205-220