Random k-Body Ensembles for Chaos and Thermalization in Isolated Systems

被引:9
作者
Kota, Venkata Krishna Brahmam [1 ]
Chavda, Narendra D. [2 ]
机构
[1] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Dept Appl Phys, Fac Engn & Technol, Vadodara 390001, India
来源
ENTROPY | 2018年 / 20卷 / 07期
关键词
embedded ensembles; k-body interactions; lie algebras; fermions; bosons; thermalization; fidelity; q-hermite polynomials; EMBEDDED GAUSSIAN ENSEMBLES; FERMION-FERMION MODEL; RANDOM MATRICES; QUANTUM CHAOS; STATISTICAL-MECHANICS; SPECTRAL PROPERTIES; UNITARY ENSEMBLE; DISTRIBUTIONS; EQUILIBRIUM; TRANSITION;
D O I
10.3390/e20070541
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Embedded ensembles or random matrix ensembles generated by k-body interactions acting in many-particle spaces are now well established to be paradigmatic models for many-body chaos and thermalization in isolated finite quantum (fermion or boson) systems. In this article, briefly discussed are (i) various embedded ensembles with Lie algebraic symmetries for fermion and boson systems and their extensions (for Majorana fermions, with point group symmetries etc.); (ii) results generated by these ensembles for various aspects of chaos, thermalization and statistical relaxation, including the role of q-hermite polynomials in k-body ensembles; and (iii) analyses of numerical and experimental data for level fluctuations for trapped boson systems and results for statistical relaxation and decoherence in these systems with close relations to results from embedded ensembles.
引用
收藏
页数:22
相关论文
共 98 条
  • [1] Nearest neighbor spacing distributions of low-lying levels of vibrational nuclei
    AbulMagd, AY
    Simbel, MH
    [J]. PHYSICAL REVIEW C, 1996, 54 (04): : 1675 - 1680
  • [2] Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems
    Alon, Ofir E.
    Streltsov, Alexej I.
    Cederbaum, Lorenz S.
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [3] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
    Altland, A
    Zirnbauer, MR
    [J]. PHYSICAL REVIEW B, 1997, 55 (02): : 1142 - 1161
  • [4] Anderson G. W., 2010, INTRO RANDOM MATRICE
  • [5] OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR
    ANDERSON, MH
    ENSHER, JR
    MATTHEWS, MR
    WIEMAN, CE
    CORNELL, EA
    [J]. SCIENCE, 1995, 269 (5221) : 198 - 201
  • [6] Chaos and localization in the wave functions of complex atoms NdI, PmI, and SmI
    Angom, D
    Kota, VKB
    [J]. PHYSICAL REVIEW A, 2005, 71 (04):
  • [7] Angom D, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016209
  • [8] [Anonymous], 2011, The oxford handbook of random matrix theory
  • [9] [Anonymous], 2010, LOG GASES RANDOM MAT
  • [10] Spectral properties of the k-body embedded Gaussian ensembles of random matrices for bosons
    Asaga, T
    Benet, L
    Rupp, T
    Weidenmüller, HA
    [J]. ANNALS OF PHYSICS, 2002, 298 (02) : 229 - 247