Dimensionality reduction approach to multivariate prediction

被引:20
作者
Abraham, B
Merola, G
机构
[1] Off Natl Stat, Methodol Grp, London, England
[2] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
dimensionality reduction methods; prediction; PLS; reduced rank regression; principal component regression; maximum overall redundancy; multivariate continuum regression;
D O I
10.1016/j.csda.2003.11.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dimensionality reduction methods used for prediction can be cast into a general framework by deriving them from a common objective function. Such a function yields continuum of different solutions, including all the known ones. Least-squares and maximum likelihood estimation of the model at the base of dimensionality reduction methods for prediction lead to an additive objective function. By letting this additive function be any convex linear combination of the two addends, another objective function from which a continuum of solutions can be obtained. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1958, INTRO MULTIVARIATE S
[2]   JOINT CONTINUUM REGRESSION FOR MULTIPLE PREDICTANDS [J].
BROOKS, R ;
STONE, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1374-1377
[3]  
Burnham AJ, 1996, J CHEMOMETR, V10, P31, DOI 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO
[4]  
2-1
[5]   Latent variable multivariate regression modeling [J].
Burnham, AJ ;
MacGregor, JF ;
Viveros, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 48 (02) :167-180
[6]   Interpretation of regression coefficients under a latent variable regression model [J].
Burnham, AJ ;
MacGregor, JF ;
Viveros, R .
JOURNAL OF CHEMOMETRICS, 2001, 15 (04) :265-284
[7]   SIMPLS - AN ALTERNATIVE APPROACH TO PARTIAL LEAST-SQUARES REGRESSION [J].
DEJONG, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1993, 18 (03) :251-263
[8]   PRINCIPAL COVARIATES REGRESSION .1. THEORY [J].
DEJONG, S ;
KIERS, HAL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1992, 14 (1-3) :155-164
[9]   PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL [J].
GELADI, P ;
KOWALSKI, BR .
ANALYTICA CHIMICA ACTA, 1986, 185 :1-17
[10]   The most predictable criterion [J].
Hotelling, H .
JOURNAL OF EDUCATIONAL PSYCHOLOGY, 1935, 26 :139-142