Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning

被引:36
作者
Duan, Haonan [1 ,2 ,3 ]
Wang, Peng [1 ,3 ,4 ]
Huang, Yayu [1 ,3 ]
Xu, Guangyun [1 ,3 ]
Wei, Wei [1 ,3 ]
Shen, Xiaofei [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
[2] Univ Pittsburgh, Dept Informat Sci, Sch Comp & Informat, Pittsburgh, PA 15260 USA
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
robotics; dexterous grasping; point cloud; deep learning; review; 3-DIMENSIONAL OBJECT RECOGNITION; NEURAL-NETWORKS; POSE ESTIMATION; MANIPULATION; MODEL; REGISTRATION; AFFORDANCES; STRATEGIES; DATASET; PICKING;
D O I
10.3389/fnbot.2021.658280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dexterous manipulation, especially dexterous grasping, is a primitive and crucial ability of robots that allows the implementation of performing human-like behaviors. Deploying the ability on robots enables them to assist and substitute human to accomplish more complex tasks in daily life and industrial production. A comprehensive review of the methods based on point cloud and deep learning for robotics dexterous grasping from three perspectives is given in this paper. As a new category schemes of the mainstream methods, the proposed generation-evaluation framework is the core concept of the classification. The other two classifications based on learning modes and applications are also briefly described afterwards. This review aims to afford a guideline for robotics dexterous grasping researchers and developers.
引用
收藏
页数:27
相关论文
共 230 条
[11]  
Bauza M, 2019, IEEE INT C INT ROBOT, P4265, DOI [10.1109/IROS40897.2019.8967920, 10.1109/iros40897.2019.8967920]
[12]   Trends and challenges in robot manipulation [J].
Billard, Aude ;
Kragic, Danica .
SCIENCE, 2019, 364 (6446) :1149-+
[13]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[14]   GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk [J].
Bottarel, Fabrizio ;
Vezzani, Giulia ;
Pattacini, Ugo ;
Natale, Lorenzo .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :836-843
[15]  
Boularias A, 2015, AAAI CONF ARTIF INTE, P1336
[16]  
Boularias A, 2014, AAAI CONF ARTIF INTE, P2520
[17]   A Deep Learning-Based Autonomous Robot Manipulator for Sorting Application [J].
Bui, Hoang-Dung ;
Nguyen, Hai ;
La, Hung Manh ;
Li, Shuai .
2020 FOURTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2020), 2020, :298-305
[18]  
Caldera Shehan, 2018, Multimodal Technologies and Interaction, V2, DOI 10.3390/mti2030057
[19]  
Calli B., 2015, IEEE ROBOT AUTOM MAG, V22, P36, DOI DOI 10.1109/MRA.2015.2448951
[20]   Yale-CMU-Berkeley dataset for robotic manipulation research [J].
Calli, Berk ;
Singh, Arjun ;
Bruce, James ;
Walsman, Aaron ;
Konolige, Kurt ;
Srinivasa, Siddhartha ;
Abbeel, Pieter ;
Dollar, Aaron M. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (03) :261-268