Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning

被引:36
作者
Duan, Haonan [1 ,2 ,3 ]
Wang, Peng [1 ,3 ,4 ]
Huang, Yayu [1 ,3 ]
Xu, Guangyun [1 ,3 ]
Wei, Wei [1 ,3 ]
Shen, Xiaofei [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
[2] Univ Pittsburgh, Dept Informat Sci, Sch Comp & Informat, Pittsburgh, PA 15260 USA
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
robotics; dexterous grasping; point cloud; deep learning; review; 3-DIMENSIONAL OBJECT RECOGNITION; NEURAL-NETWORKS; POSE ESTIMATION; MANIPULATION; MODEL; REGISTRATION; AFFORDANCES; STRATEGIES; DATASET; PICKING;
D O I
10.3389/fnbot.2021.658280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dexterous manipulation, especially dexterous grasping, is a primitive and crucial ability of robots that allows the implementation of performing human-like behaviors. Deploying the ability on robots enables them to assist and substitute human to accomplish more complex tasks in daily life and industrial production. A comprehensive review of the methods based on point cloud and deep learning for robotics dexterous grasping from three perspectives is given in this paper. As a new category schemes of the mainstream methods, the proposed generation-evaluation framework is the core concept of the classification. The other two classifications based on learning modes and applications are also briefly described afterwards. This review aims to afford a guideline for robotics dexterous grasping researchers and developers.
引用
收藏
页数:27
相关论文
共 230 条
[1]   A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping [J].
Abi-Farraj, Firas ;
Pacchierotti, Claudio ;
Arenz, Oleg ;
Neumann, Gerhard ;
Giordano, Paolo Robuffo .
IEEE TRANSACTIONS ON HAPTICS, 2020, 13 (02) :270-285
[2]   Tutorial Point Cloud Library Three-Dimensional Object Recognition and 6 DOF Pose Estimation [J].
Aldoma, Aitor ;
Marton, Zoltan-Csaba ;
Tombari, Federico ;
Wohlkinger, Walter ;
Potthast, Christian ;
Zeisl, Bernhard ;
Rusu, Radu Bogdan ;
Gedikli, Suat ;
Vincze, Markus .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (03) :80-91
[3]  
Ammanabrolu P., 2019, ARXIV PREPRINT ARXIV, DOI [10.18653/v1/D19-5301, DOI 10.18653/V1/D19-5301]
[4]  
[Anonymous], ROBOT WORLD CUP
[5]  
[Anonymous], 1993, A Mathematical Introduction to Robotic Manipulation
[6]  
[Anonymous], 2018, P ROBOTICS SCI SYSTE, DOI DOI 10.15607/RSS.2018.XIV.021
[7]  
[Anonymous], 2016, P 29 IEEE C COMPUTER
[8]  
Antonova R., 2018, ARXIV PREPRINT ARXIV
[9]   Learning Grasp Affordance Reasoning Through Semantic Relations [J].
Ardon, Paola ;
Pairet, Eric ;
Petrick, Ronald P. A. ;
Ramamoorthy, Subramanian ;
Lohan, Katrin S. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04) :4571-4578