Spinodal decomposition in (Ti, Zr)CoSb half-Heusler: A nanostructuring route toward high efficiency thermoelectric materials

被引:25
作者
Chauhan, Nagendra S. [1 ,2 ,3 ]
Bathula, Sivaiah [1 ,2 ,4 ]
Gahtori, Bhasker [1 ,2 ]
Kolenko, Yury, V [3 ]
Shyam, Radhey [1 ,2 ]
Upadhyay, N. K. [1 ,2 ]
Dhar, Ajay [1 ,2 ]
机构
[1] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[2] CSIR Natl Phys Lab, Dr KS Krishnan Marg, New Delhi 110012, India
[3] Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal
[4] Indian Inst Technol, Sch Minerals Met & Mat Engn, Bhubaneswar 752050, Odisha, India
关键词
PERFORMANCE; ALLOYS; FIGURE; ENERGY; MERIT; ZT;
D O I
10.1063/1.5109091
中图分类号
O59 [应用物理学];
学科分类号
摘要
Half-Heuslers (HH) represent an emerging family of thermoelectric (TE) materials, wherein intrinsic doping enables a wide range of electronic functionalities. In recent years, the solid-state transformation phenomenonon of spinodal decomposition has been actively explored as an effective paradigm to attain bulk nanostructured TE materials via induced phase separation. In the present work, the implication of intrinsic doping and spinodal decomposition on the thermal and electrical transport parameters of nonstoichiometric (Ti, Zr)CoSb HH systems is examined and corroborated with the help of microstructural characteristics. The synthesized HH nanocomposites were found to contain coherent nanoscale heterogeneities along with nanoscale grain, which severely depress the lattice thermal conductivity, while the intrinsic doping due to interstitial Co and defects induced by excess Co off-stoichiometry favorably tunes the electrical transport. A maximum ZT of similar to 0.7 at 873 K was obtained for optimized p-type ZrCo1.03Sb0.8Sn0.2 HH nanocomposites, which is among the highest obtained in p-type HH alloys. The present work thus provides a fundamental basis to the understanding of defect engineering and to achieve highly efficient and cost effective HH compositions.
引用
收藏
页数:8
相关论文
共 36 条
[31]   The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials [J].
Xie, Hanhui ;
Wang, Heng ;
Fu, Chenguang ;
Liu, Yintu ;
Snyder, G. Jeffrey ;
Zhao, Xinbing ;
Zhu, Tiejun .
SCIENTIFIC REPORTS, 2014, 4
[32]   Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half-Heusler Thermoelectric Materials [J].
Xie, Hanhui ;
Wang, Heng ;
Pei, Yanzhong ;
Fu, Chenguang ;
Liu, Xiaohua ;
Snyder, G. Jeffrey ;
Zhao, Xinbing ;
Zhu, Tiejun .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (41) :5123-5130
[33]   Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers [J].
Yan, Xiao ;
Joshi, Giri ;
Liu, Weishu ;
Lan, Yucheng ;
Wang, Hui ;
Lee, Sangyeop ;
Simonson, J. W. ;
Poon, S. J. ;
Tritt, T. M. ;
Chen, Gang ;
Ren, Z. F. .
NANO LETTERS, 2011, 11 (02) :556-560
[34]   Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes [J].
Yannello, Vincent J. ;
Fredrickson, Daniel C. .
INORGANIC CHEMISTRY, 2015, 54 (23) :11385-11398
[35]   Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory [J].
Zahedifar, Maedeh ;
Kratzer, Peter .
PHYSICAL REVIEW B, 2018, 97 (03)
[36]   Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices [J].
Zide, J. M. O. ;
Vashaee, D. ;
Bian, Z. X. ;
Zeng, G. ;
Bowers, J. E. ;
Shakouri, A. ;
Gossard, A. C. .
PHYSICAL REVIEW B, 2006, 74 (20)