Fully Discrete Finite Element Methods for Two-Dimensional Bingham Flows

被引:2
|
作者
Fang, Cheng [1 ]
Li, Yuan [2 ]
机构
[1] Zhejiang Univ Finance & Econ, Sch Data Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
基金
美国国家科学基金会;
关键词
PRESSURE STABILIZATION; NUMERICAL-SIMULATION; BOUNDARY-CONDITIONS; FLUID-FLOW; FORMULATION;
D O I
10.1155/2018/4865849
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents fully discrete stabilized finite element methods for two-dimensional Bingham fluid flow based on the method of regularization. Motivated by the Brezzi-Pitkaranta stabilized finite element method, the equal-order piecewise linear finite element approximation is used for both the velocity and the pressure. Based on Euler semi-implicit scheme, a fully discrete scheme is introduced. It is shown that the proposed fully discrete stabilized finite element scheme results in the h(1/2) error order for the velocity in the discrete norms corresponding to L-2(0,T; H-1(Omega)(2)) boolean AND L-infinity(0, T; L-2(Omega)(2)).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On open boundaries in the finite element approximation of two-dimensional advection-diffusion flows
    Padilla, F
    Secretan, Y
    Leclerc, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (13) : 2493 - 2516
  • [2] Analysis of finite-volume discrete adjoint fields for two-dimensional compressible Euler flows
    Peter, Jacques
    Renac, Florent
    Labbe, Clement
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [3] The discontinuous Galerkin spectral element methods for compressible flows on two-dimensional mixed grids
    Li, Wanai
    Pan, Jianhua
    Ren, Yu-Xin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 364 : 314 - 346
  • [4] Mesh adaption for two-dimensional bounded and free-surface flows with the particle finite element method
    Falla, Romain
    Bobach, Billy-Joe
    Boman, Romain
    Ponthot, Jean-Philippe
    Terrapon, Vincent E.
    COMPUTATIONAL PARTICLE MECHANICS, 2023, 10 (05) : 1049 - 1076
  • [5] Weakly viscous two-dimensional incompressible fluid flows using efficient isogeometric finite element method
    Mandal, Mrityunjoy
    Shaikh, Jahangir Hossain
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [6] A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations
    Tatone, B. S. A.
    Grasselli, G.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2015, 75 : 56 - 72
  • [7] A Fully Discrete Stabilized Mixed Finite Element Method for Parabolic Problems
    Weng, Zhifeng
    Feng, Xinlong
    Liu, Demin
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2013, 63 (10) : 755 - 775
  • [8] Spectral analysis of nonlocal regularization in two-dimensional finite element models
    Lu, Xilin
    Bardet, Jean-Pierre
    Huang, Maosong
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2012, 36 (02) : 219 - 235
  • [9] Two-Dimensional Mesoscale Finite Element Modeling of Concrete Damage and Failure
    Najafi Koopas, Rasoul
    Rauter, Natalie
    Lammering, Rolf
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [10] Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed
    Naeini, S. E.
    Spelt, J. K.
    POWDER TECHNOLOGY, 2009, 195 (02) : 83 - 90