This paper presents fully discrete stabilized finite element methods for two-dimensional Bingham fluid flow based on the method of regularization. Motivated by the Brezzi-Pitkaranta stabilized finite element method, the equal-order piecewise linear finite element approximation is used for both the velocity and the pressure. Based on Euler semi-implicit scheme, a fully discrete scheme is introduced. It is shown that the proposed fully discrete stabilized finite element scheme results in the h(1/2) error order for the velocity in the discrete norms corresponding to L-2(0,T; H-1(Omega)(2)) boolean AND L-infinity(0, T; L-2(Omega)(2)).
机构:
Sun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
Li, Wanai
Pan, Jianhua
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R ChinaSun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
Pan, Jianhua
Ren, Yu-Xin
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R ChinaSun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Weng, Zhifeng
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Feng, Xinlong
Liu, Demin
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China