Estimation of Performance Parameters of Turbine Engine Components Using Experimental Data in Parametric Uncertainty Conditions

被引:10
作者
Khustochka, Olexandr [1 ]
Yepifanov, Sergiy [2 ]
Zelenskyi, Roman [2 ]
Przysowa, Radoslaw [3 ,4 ]
机构
[1] SE Ivchenko Progress, UA-69068 Zaporizhia, Ukraine
[2] Natl Aerosp Univ, Kharkiv Aviat Inst, Aircraft Engine Dept, UA-61070 Kharkiv, Ukraine
[3] ITWL, Ul Ksiecia Boleslawa 6, PL-01494 Warsaw, Poland
[4] Technol Partners, Ul Pawinskiego 5A, PL-02106 Warsaw, Poland
基金
欧盟地平线“2020”;
关键词
gas turbine engine; performance model; gas path analysis; robust estimation; identification; regularization; fuzzy set; membership function; KALMAN FILTER;
D O I
10.3390/aerospace7010006
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Zero-dimensional models based on the description of the thermo-gas-dynamic process are widely used in the design of engines and their control and diagnostic systems. The models are subjected to an identification procedure to bring their outputs as close as possible to experimental data and assess engine health. This paper aims to improve the stability of engine model identification when the number of measured parameters is small, and their measurement error is not negligible. The proposed method for the estimation of engine components' parameters, based on multi-criteria identification, provides stable estimations and their confidence intervals within known measurement errors. A priori information about the engine, its parameters and performance is used directly in the regularized identification procedure. The mathematical basis for this approach is the fuzzy sets theory. Synthesis of objective functions and subsequent scalar convolutions of these functions are used to estimate gas-path components' parameters. A comparison with traditional methods showed that the main advantage of the proposed approach is the high stability of estimation in the parametric uncertainty conditions. Regularization reduces scattering, excludes incorrect solutions that do not correspond to a priori assumptions and also helps to implement the gas path analysis with a limited number of measured parameters. The method can be used for matching thermodynamic models to experimental data, gas path analysis and adapting dynamic models to the needs of the engine control system.
引用
收藏
页数:17
相关论文
共 39 条
[1]   Computational Simulation of PT6A Gas Turbine Engine Operating with Different Blends of Biodiesel-A Transient-Response Analysis [J].
Bayona-Roa, Camilo ;
Solis-Chaves, J. S. ;
Bonilla, Javier ;
Rodriguez-Melendez, A. G. ;
Castellanos, Diego .
ENERGIES, 2019, 12 (22)
[2]   Comparison of adaptive filters for gas turbine performance monitoring [J].
Borguet, S. ;
Leonard, O. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (07) :2202-2212
[3]   Regularisation approach for real-time modelling of aero gas turbines [J].
Breikin, TV ;
Arkov, VY ;
Kulikov, GG .
CONTROL ENGINEERING PRACTICE, 2004, 12 (04) :401-407
[4]  
Cao Y, 2018, EPIJOURNAL GEOM ALGE, V2
[5]   Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine [J].
Chang, Xiaodong ;
Huang, Jinquan ;
Lu, Feng .
ENERGIES, 2017, 10 (07)
[6]   Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers [J].
Chang, Xiaodong ;
Huang, Jinquan ;
Lu, Feng .
SENSORS, 2017, 17 (04)
[7]   Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer [J].
Chang, Xiaodong ;
Huang, Jinquan ;
Lu, Feng ;
Sun, Haobo .
ENERGIES, 2016, 9 (08)
[8]   A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities [J].
Fentaye, Amare D. ;
Baheta, Aklilu T. ;
Gilani, Syed, I ;
Kyprianidis, Konstantinos G. .
AEROSPACE, 2019, 6 (07)
[9]  
Guseynov Sharif E., 2015, Advanced Materials Research, V1117, P254, DOI 10.4028/www.scientific.net/AMR.1117.254
[10]  
GUSEYNOV SE, 2011, DISCRETE CONT S SEP, P614, DOI DOI 10.3934/proc.2011.2011.614