Electron scattering loss in Earth's inner magnetosphere - 2. Sensitivity to model parameters

被引:122
作者
Abel, B [1 ]
Thorne, RM
机构
[1] Olympic Coll, Dept Appl Phys, Bremerton, WA 98810 USA
[2] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA
来源
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS | 1998年 / 103卷 / A2期
关键词
D O I
10.1029/97JA02920
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The sensitivity of the rate of energetic electron pitch angle scattering and precipitation loss in the Earth's magnetosphere due to Coulomb interactions with thermal plasma and resonant wave-particle interactions with plasmaspheric hiss, lightning-generated whistlers and VLF transmitter signals is computed for a realistic range of plasma and wave parameters. The computed scattering rates are most sensitive to the choice of mean wave frequency and the average angle of propagation; the frequency bandwidth and angular spread in propagation direction are relatively unimportant. Variations in plasma density can also strongly modulate the effectiveness of wave-particle interactions. The average intensity of plasma waves controls electron lifetimes, but has little effect on the shape of the equilibrium pitch angle distribution function. All three classes of waves must be included together with Coulomb collisions in any realistic analysis of inner magnetospheric electron scattering. The long-term energetic electron population beyond the inner belt is largely controlled by plasmaspheric hiss and, to a lesser extent, by lightning-generated whistlers, while VLF transmitter signals constitute the principal loss mechanism over the range 1.3 less than or equal to L less than or equal to 2.4. The region below L = 1.3 is dominated by Coulomb collisions.
引用
收藏
页码:2397 / 2407
页数:11
相关论文
共 25 条
[1]   QUASI-LINEAR PITCH-ANGLE DIFFUSION-COEFFICIENTS - RETAINING HIGH HARMONICS [J].
ALBERT, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A12) :23741-23745
[2]   THE ROLE OF DUCTED WHISTLERS IN THE PRECIPITATION LOSS AND EQUILIBRIUM FLUX OF RADIATION BELT ELECTRONS [J].
BURGESS, WC ;
INAN, US .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1993, 98 (A9) :15643-15665
[3]   ON THE ORIGIN OF PLASMASPHERIC HISS - RAY PATH INTEGRATED AMPLIFICATION [J].
CHURCH, SR ;
THORNE, RM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1983, 88 (NA10) :7941-7957
[4]   Ground-based evidence of latitude-dependent cyclotron absorption of whistler mode signals originating from VLF transmitters [J].
Clilverd, MA ;
Horne, RB .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A2) :2355-2367
[5]   LOCAL TIME AND SEASONAL-VARIATIONS IN THE PRECIPITATION OF ENERGETIC ELECTRONS FROM THE INNER RADIATION BELT BY CYCLOTRON-RESONANCE WITH WAVES FROM POWERFUL VLF TRANSMITTERS [J].
DATLOWE, DW ;
IMHOF, WL ;
FISHMAN, GJ ;
FINGER, MH .
RADIO SCIENCE, 1995, 30 (01) :47-55
[6]   WHISTLERS AND PLASMASPHERIC HISS - WAVE DIRECTIONS AND 3-DIMENSIONAL PROPAGATION [J].
DRAGANOV, AB ;
INAN, US ;
SONWALKAR, VS ;
BELL, TF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1993, 98 (A7) :11401-11410
[7]   MAGNETOSPHERICALLY REFLECTED WHISTLERS AS A SOURCE OF PLASMASPHERIC HISS [J].
DRAGANOV, AB ;
INAN, US ;
SONWALKAR, VS ;
BELL, TF .
GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (03) :233-236
[8]   PLASMA-WAVE OBSERVATIONS WITH THE DYNAMICS EXPLORER-1 SPACECRAFT [J].
GURNETT, DA ;
INAN, US .
REVIEWS OF GEOPHYSICS, 1988, 26 (02) :285-316
[9]  
Helliwell R.A., 1965, Whistlers and related ionospheric phenomena