Meal Detection in Patients With Type 1 Diabetes: A New Module for the Multivariable Adaptive Artificial Pancreas Control System

被引:94
|
作者
Turksoy, Kamuran [1 ]
Samadi, Sediqeh [2 ]
Feng, Jianyuan [2 ]
Littlejohn, Elizabeth [3 ]
Quinn, Laurie [4 ]
Cinar, Ali [5 ,6 ]
机构
[1] IIT, Dept Biomed Engn, Chicago, IL 60616 USA
[2] IIT, Dept Chem & Biol Engn, Proc Modeling Monitoring & Control Res Grp, Chicago, IL 60616 USA
[3] Univ Chicago, Dept Pediat, Kovler Diabet Ctr, Chicago, IL 60637 USA
[4] Univ Illinois, Coll Nursing, Dept Biobehav Hlth Sci, Chicago, IL 60612 USA
[5] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
[6] IIT, Dept Biomed Engn, Chicago, IL 60616 USA
基金
美国国家卫生研究院;
关键词
Artificial Pancreas (AP); hyperglycemia; meal detection; type 1 diabetes (T1D); unscented Kalman filter (UKF); LOOP INSULIN DELIVERY; BIONIC PANCREAS; GLUCOSE CONTROL; MINIMAL MODEL; ADOLESCENTS; SENSITIVITY; INFUSION; ADULTS;
D O I
10.1109/JBHI.2015.2446413
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman's minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(+/- 9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of postprandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [31] Future Artificial Pancreas Technology for Type 1 Diabetes: What Do Users Want?
    Barnard, Katharine D.
    Pinsker, Jordan E.
    Oliver, Nick
    Astle, Annabel
    Dassau, Eyal
    Kerr, David
    Diabetes Technology & Therapeutics, 2015, 17 (05) : 311 - 315
  • [32] Artificial Pancreas With Carbohydrate Suggestion Performance for Unannounced and Announced Exercise in Type 1 Diabetes
    Vinals, Clara
    Beneyto, Aleix
    Martin-SanJose, Juan-Fernando
    Furio-Novejarque, Clara
    Bertachi, Arthur
    Bondia, Jorge
    Vehi, Josep
    Conget, Ignacio
    Gimenez, Marga
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2021, 106 (01) : 55 - 63
  • [33] Physiology-Invariant Meal Detection for Type 1 Diabetes
    Weimer, James
    Chen, Sanjian
    Peleckis, Amy
    Rickels, Michael R.
    Lee, Insup
    DIABETES TECHNOLOGY & THERAPEUTICS, 2016, 18 (10) : 616 - 624
  • [34] Initial titration for people with type 1 diabetes using an artificial pancreas
    Sejersen, Maria
    Boiroux, Dimitri
    Engell, Sarah Ellinor
    Ritschel, Tobias Kasper Skovborg
    Reenberg, Asbjorn Thode
    Jorgensen, John Bagterp
    IFAC PAPERSONLINE, 2021, 54 (15): : 484 - 489
  • [35] Incorporating Sparse and Quantized Carbohydrates Suggestions in Model Predictive Control for Artificial Pancreas in Type 1 Diabetes
    Pavan, Jacopo
    Salvagnin, Domenico
    Facchinetti, Andrea
    Sparacino, Giovanni
    Del Favero, Simone
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (02) : 570 - 586
  • [36] Safety Auxiliary Feedback Element for the Artificial Pancreas in Type 1 Diabetes
    Revert, A.
    Garelli, F.
    Pico, J.
    De Battista, H.
    Rossetti, P.
    Vehi, J.
    Bondia, J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (08) : 2113 - 2122
  • [37] Fully Integrated Artificial Pancreas in Type 1 Diabetes: Modular Closed-Loop Glucose Control Maintains Near Normoglycemia
    Breton, Marc
    Farret, Anne
    Bruttomesso, Daniela
    Anderson, Stacey
    Magni, Lalo
    Patek, Stephen
    Man, Chiara Dalla
    Place, Jerome
    Demartini, Susan
    Del Favero, Simone
    Toffanin, Chiara
    Hughes-Karvetski, Colleen
    Dassau, Eyal
    Zisser, Howard
    Doyle, Francis J., III
    De Nicolao, Giuseppe
    Avogaro, Angelo
    Cobelli, Claudio
    Renard, Eric
    Kovatchev, Boris
    DIABETES, 2012, 61 (09) : 2230 - 2237
  • [38] Safety and Efficacy of Initializing the Control-IQ Artificial Pancreas System Based on Total Daily Insulin in Adolescents with Type 1 Diabetes
    Schoelwer, Melissa J.
    Robic, Jessica L.
    Gautier, Thibault
    Fabris, Chiara
    Carr, Kelly
    Clancy-Oliveri, Mary
    Brown, Sue A.
    Anderson, Stacey M.
    DeBoer, Mark D.
    Chernavvsky, Daniel R.
    Breton, Marc D.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2020, 22 (08) : 594 - 601
  • [39] Meal timing, meal frequency, and breakfast skipping in adult individuals with type 1 diabetes - associations with glycaemic control
    Ahola, Aila J.
    Mutter, Stefan
    Forsblom, Carol
    Harjutsalo, Valma
    Groop, Per-Henrik
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [40] A Randomized Crossover Trial to Compare Automated Insulin Delivery (the Artificial Pancreas) With Carbohydrate Counting or Simplified Qualitative Meal-Size Estimation in Type 1 Diabetes
    Haidar, Ahmad
    Legault, Laurent
    Raffray, Marie
    Gouchie-Provencher, Nikita
    Jafar, Adnan
    Devaux, Marie
    Ghanbari, Milad
    Rabasa-Lhoret, Remi
    DIABETES CARE, 2023, 46 (07) : 1372 - 1378