Port-Hamiltonian formulation of two-phase flow models

被引:9
作者
Bansal, H. [1 ]
Schulze, P. [2 ]
Abbasi, M. H. [1 ]
Zwart, H. [3 ,4 ]
Iapichino, L. [1 ]
Schilders, W. H. A. [1 ]
van de Wouw, N. [4 ,5 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Tech Univ Berlin, Inst Math, Berlin, Germany
[3] Univ Twente, Dept Appl Math, Enschede, Netherlands
[4] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[5] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN USA
基金
欧盟地平线“2020”;
关键词
Two-Fluid Model; Drift Flux Model; Non-quadratic Hamiltonian; Skew-adjoint; Stokes-Dirac structures; Port-Hamiltonian; SYSTEMS; HYDRODYNAMICS; EQUATIONS;
D O I
10.1016/j.sysconle.2021.104881
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two-phase flows are frequently modelled and simulated using the Two-Fluid Model (TFM) and the Drift Flux Model (DFM). This paper proposes Stokes-Dirac structures with respect to which port-Hamiltonian representations for such two-phase flow models can be obtained. We introduce a non-quadratic candidate Hamiltonian function and present dissipative Hamiltonian representations for both models. We then use the structure of the corresponding formally skew-adjoint operator to derive a Stokes-Dirac structure for the two variants of multi-phase flow models. Moreover, we discuss the difficulties in deriving a port-Hamiltonian formulation of the DFM with general slip conditions, and argue why this model may not be energy-consistent. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 32 条
[1]  
Aarsnes U., 2016, THESIS NTNU
[2]  
Aarsnes UJF, 2014, 7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 3
[3]  
Abbasi MH, 2020, P AMER CONTR CONF, P3097, DOI [10.23919/ACC45564.2020.9147405, 10.23919/acc45564.2020.9147405]
[4]  
Abbasi M.H., EXTENDED VERSION PAP
[5]   A port -Hamiltonian formulation of the Navier-Stokes equations for reactive flows [J].
Altmann, R. ;
Schulze, P. .
SYSTEMS & CONTROL LETTERS, 2017, 100 :51-55
[6]  
[Anonymous], 2006, THERMO FLUID DYNAMIC
[7]   Port-based modelling of mass transport phenomena [J].
Baaiu, A. ;
Couenne, F. ;
Eberard, D. ;
Jallut, C. ;
Lefevre, L. ;
Legorrec, Y. ;
Maschke, B. .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2009, 15 (03) :233-254
[8]  
Bansal H., 2020, THESIS EINDHOVEN U T
[9]   Modeling of a fluid-structure coupled system using port-Hamiltonian formulation [J].
Cardoso-Ribeiro, Flavio Luiz ;
Matignon, Denis ;
Pommier-Budinger, Valerie .
IFAC PAPERSONLINE, 2015, 48 (13) :217-222
[10]  
Cengel Y.A., 2006, Thermodynamics - An engineering Approach