A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy

被引:92
作者
Tapio, Kosti [1 ]
Mostafa, Amr [1 ]
Kanehira, Yuya [1 ]
Suma, Antonio [2 ,3 ,4 ]
Dutta, Anushree [1 ]
Bald, Ilko [1 ]
机构
[1] Univ Potsdam, Inst Chem, DE-14476 Potsdam, Germany
[2] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA
[3] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[4] Sez INFN Bari, I-70126 Bari, Italy
基金
欧洲研究理事会;
关键词
DNA origami; surface-enhanced Raman scattering; nanoparticles; single molecules; proteins; plasmonics; FLUORESCENCE ENHANCEMENT; GOLD NANOPARTICLES; FOLDING DNA; SCATTERING; SERS; SHAPE; BLINKING; DIMERS;
D O I
10.1021/acsnano.1c00188
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA origami technology allows for the precise nanoscale assembly of chemical entities that give rise to sophisticated functional materials. We have created a versatile DNA origami nanofork antenna (DONA) by assembling Au or Ag nanoparticle dimers with different gap sizes down to 1.17 nm, enabling signal enhancements in surface-enhanced Raman scattering (SERS) of up to 10(11). This allows for single-molecule SERS measurements, which can even be performed with larger gap sizes to accommodate differently sized molecules, at various excitation wavelengths. A general scheme is presented to place single analyte molecules into the SERS hot spots using the DNA origami structure exploiting covalent and noncovalent coupling schemes. By using Au and Ag dimers, single-molecule SERS measurements of three dyes and cytochrome c and horseradish peroxidase proteins are demonstrated even under nonresonant excitation conditions, thus providing long photostability during time-series measurement and enabling optical monitoring of single molecules.
引用
收藏
页码:7065 / 7077
页数:13
相关论文
共 64 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]  
[Anonymous], 2013, J PHYS CHEM LETT, V4
[3]  
Berglund G.I., 2022, STRUCTURE HORSERADIS, DOI [10.2210/pdb1hch/pdb, DOI 10.2210/PDB1HCH/PDB]
[4]   Cytochrome c: Occurrence and functions [J].
Bertini, I ;
Cavallaro, G ;
Rosato, A .
CHEMICAL REVIEWS, 2006, 106 (01) :90-115
[5]  
Castro CE, 2011, NAT METHODS, V8, P221, DOI [10.1038/nmeth.1570, 10.1038/NMETH.1570]
[6]  
Chikkaraddy R., 2020, J RAMAN SPECTROSC, V205, P291
[7]   Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami [J].
Chikkaraddy, Rohit ;
Turek, V. A. ;
Kongsuwan, Nuttawut ;
Benz, Felix ;
Carnegie, Cloudy ;
van de Goor, Tim ;
de Nijs, Bart ;
Demetriadou, Angela ;
Hess, Ortwin ;
Keyser, Ulrich F. ;
Baumberg, Jeremy J. .
NANO LETTERS, 2018, 18 (01) :405-411
[8]   Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology [J].
Claridge, Shelley A. ;
Schwartz, Jeffrey J. ;
Weiss, Paul S. .
ACS NANO, 2011, 5 (02) :693-729
[9]   Folding DNA into Twisted and Curved Nanoscale Shapes [J].
Dietz, Hendrik ;
Douglas, Shawn M. ;
Shih, William M. .
SCIENCE, 2009, 325 (5941) :725-730
[10]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+