New and More Solitary Wave Solutions for the Klein-Gordon-Schrodinger Model Arising in Nucleon-Meson Interaction

被引:5
作者
Raza, Nauman [1 ]
Arshed, Saima [1 ]
Butt, Asma Rashid [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Univ Punjab, Dept Math, Lahore, Pakistan
[2] Univ Engn & Technol, Dept Math, Lahore, Pakistan
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
traveling wave solution; tanh-coth method; e-8(.)-expansion method; Kudryashov's method; Klein-Gordon-Schrodinger equation; EQUATIONS; SCHEME;
D O I
10.3389/fphy.2021.637964
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers methods to extract exact, explicit, and new single soliton solutions related to the nonlinear Klein-Gordon-Schrodinger model that is utilized in the study of neutral scalar mesons associated with conserved scalar nucleons coupled through the Yukawa interaction. Three state of the art integration schemes, namely, the e(-phi(xi))-expansion method, Kudryashov's method, and the tanh-coth expansion method are employed to extract bright soliton, dark soliton, periodic soliton, combo soliton, kink soliton, and singular soliton solutions. All the constructed solutions satisfy their existence criteria. It is shown that these methods are concise, straightforward, promising, and reliable mathematical tools to untangle the physical features of mathematical physics equations.
引用
收藏
页数:7
相关论文
共 36 条
[1]   The extended F-expansion method and its application for a class of nonlinear evolution equations [J].
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :95-104
[2]   Optical soliton solutions to the generalized nonautonomous nonlinear Schrodinger equations in optical fibers via the sine-Gordon expansion method [J].
Ali, Khaled K. ;
Wazwaz, Abdul-Majid ;
Osman, M. S. .
OPTIK, 2020, 208
[3]   ANOMALOUS DIFFUSION IN STEADY FLUID-FLOW THROUGH A POROUS-MEDIUM [J].
ARONOVITZ, JA ;
NELSON, DR .
PHYSICAL REVIEW A, 1984, 30 (04) :1948-1954
[4]  
Asokan R., 2013, International Journal of Pure and Applied Mathematics, V117, P19
[5]   An electromagnetism-like mechanism for global optimization [J].
Birbil, SI ;
Fang, SC .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 25 (03) :263-282
[6]   1-Soliton solution of the Klein-Gordon-Schrodinger's equation with power law nonlinearity [J].
Biswas, Anjan ;
Triki, Houria .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :3869-3874
[7]   SIMILARITY REDUCTIONS FROM EXTENDED PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1991, 53 (01) :59-70
[8]   A CELL MAPPING METHOD FOR NONLINEAR DETERMINISTIC AND STOCHASTIC-SYSTEMS .2. EXAMPLES OF APPLICATION [J].
CHIU, HM ;
HSU, CS .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (03) :702-710
[9]   Numerical solution of the Yukawa-coupled Klein-Gordon-Schrodinger equations via a Chebyshev pseudospectral multidomain method [J].
Dehghan, Mehdi ;
Taleei, Ameneh .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (06) :2340-2349
[10]   COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2. [J].
FUKUDA, I ;
TSUTSUMI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) :358-378