Explainable anomaly detection for Hot-rolling industrial process

被引:16
作者
Jakubowski, Jakub [1 ,2 ]
Stanisz, Przemyslaw [1 ]
Bobek, Szymon [3 ,4 ]
Nalepa, Grzegorz J. [3 ,4 ]
机构
[1] Arcelor Mittal Poland, Krakow, Poland
[2] AGH Univ Sci & Technol, Krakow, Poland
[3] Jagiellonian Univ, Jagiellonian Human Ctr Artificial Intelligence La, PL-31007 Krakow, Poland
[4] Jagiellonian Univ, Inst Appl Comp Sci, PL-31007 Krakow, Poland
来源
2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA) | 2021年
关键词
machine learning; deep learning; anomaly detection; explanainability; hot rolling;
D O I
10.1109/DSAA53316.2021.9564228
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection is emerging trend in manufacturing processes and may be considered as part of the Industry 4.0 revolution. It can serve both as diagnostic tool in predictive maintenance task, as well as trace back mechanism for assessing quality of production or services. In this paper we describe and approach for explainable anomaly detection in industrial data which contains sequential and static features. We based our solution on modified autoencoder architecture with Long Short-Term Memory layers. To address a problem of explinability in deep learning and find origin of the anomalies we have engaged the SHAP method, which gives both local and global explanations of the model. Analysis of SHAP explanations allowed us to determine the source of majority of anomalies detected by deep learning model. We demonstrated the feasibility of our approach on synthetic, reproducible dataset and on real-life data gathered from hot rolling industrial process.
引用
收藏
页数:10
相关论文
共 50 条
[31]   MADICS: A Methodology for Anomaly Detection in Industrial Control Systems [J].
Perales Gomez, Angel Luis ;
Fernandez Maimo, Lorenzo ;
Huertas Celdran, Alberto ;
Garcia Clemente, Felix J. .
SYMMETRY-BASEL, 2020, 12 (10)
[32]   Anomaly Detection in Asset Degradation Process Using Variational Autoencoder and Explanations [J].
Jakubowski, Jakub ;
Stanisz, Przemyslaw ;
Bobek, Szymon ;
Nalepa, Grzegorz J. .
SENSORS, 2022, 22 (01)
[33]   Characterization of dual-phase steels obtained by hot-rolling [J].
Monsalve G, A. ;
Artigas A, A. ;
Castro C, F. ;
Colas, R. ;
Houbaert, Y. .
REVISTA DE METALURGIA, 2011, 47 (01) :5-14
[34]   Hot-rolling nanowire transparent electrodes for surface roughness minimization [J].
Khaligh, Hadi Hosseinzadeh ;
Goldthorpe, Irene A. .
NANOSCALE RESEARCH LETTERS, 2014, 9 :1-5
[35]   Hot-rolling nanowire transparent electrodes for surface roughness minimization [J].
Hadi Hosseinzadeh Khaligh ;
Irene A Goldthorpe .
Nanoscale Research Letters, 9
[36]   Effect of the Temperature–Speed Hot-Rolling Conditions on Scale Formation [J].
S. I. Platov ;
R. R. Dema ;
O. R. Latypov ;
V. S. Banshchikov ;
V. A. Mustafin ;
M. V. Kharchenko ;
D. V. Terent’ev .
Russian Metallurgy (Metally), 2021, 2021 :1766-1770
[37]   Two-step foaming process combined with hot-rolling in fabrication of an aluminium foam sandwich panel [J].
Lu, Xiaotong ;
Luo, Hongjie ;
Yang, Shijie ;
Wei, You ;
Xu, Jianrong ;
Yao, Zhi .
MATERIALS LETTERS, 2020, 265
[38]   Hot-rolling batch plan considering heating temperature curve [J].
Pan, Rui-Lin ;
Hu, Bang-Guo ;
Cao, Jian-Hua ;
Liu, De-Lou .
Pan, Rui-Lin, 1600, CIMS (20) :2826-2835
[39]   Explainable Anomaly Detection via Feature-Based Localization [J].
Kitamura, Shogo ;
Nonaka, Yuichi .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 :408-419
[40]   FINITE-ELEMENT ANALYSIS OF EDGE LAMINATION DURING HOT-ROLLING PROCESS OF ALUMINUM-ALLOY [J].
TAKUDA, H ;
FUJIMOTO, H ;
TSUCHIDA, M ;
HATTA, N .
ARCHIVE OF APPLIED MECHANICS, 1995, 65 (06) :365-373