Mapping Basal Melt Under the Shackleton Ice Shelf, East Antarctica, From CryoSat-2 Radar Altimetry

被引:8
作者
Liang, Qi [1 ]
Zhou, Chunxia [2 ]
Zheng, Lei [1 ]
机构
[1] Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519000, Peoples R China
[2] Chinese Antarctic Ctr Surveying & Mapping Wuhan, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Ice shelf; Ice; Sea surface; Antarctica; Sea measurements; Sea level; Uncertainty; Altimetry; basal melt rate; CryoSat-2; ice shelf; Lagrangian framework; PINE ISLAND GLACIER; DIGITAL ELEVATION MODEL; SURFACE MASS-BALANCE; RATES; BENEATH; CLIMATE; DRIVEN; CIRCULATION; GREENLAND; IMPACTS;
D O I
10.1109/JSTARS.2021.3077359
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ice shelvesbuttress the fast-flowing glaciers draining ice sheets, so changes in the ice shelves may alter the buttressing effect and the discharge of grounded ice, therefore influencing sea level. Basal melting of the ice shelves would reduce their ability to restrain the discharge of grounded ice into the ocean. However, estimating the basal melt rate is challenging due to the large uncertainty in the calculation. In this study, we use a Lagrangian framework to improve the basal melt rate derivation and apply the method to the Shackleton ice shelf as a case study. We use the CryoSat-2 data to characterize the spatial distribution patterns of ice shelf surface elevation changes between 2010 and 2018. Combining these results with the ice surface velocity and output from the regional climate model, we obtain a map of the basal melt rate and calculate the total and average basal mass balance. The total basal meltwater production for the Shackleton ice shelf is 54.6 +/- 7.2 Gt/yr. The highest melt rates, which exceed 50 m/yr, are found close to the grounding line and the main trunk of Denman glacier. Based on the analysis, we show that the Lagrangian method can provide more spatially coherent patterns of ice shelf surface elevation changes and reduce the uncertainty in basal melt rate calculation.
引用
收藏
页码:5091 / 5099
页数:9
相关论文
共 63 条
  • [1] Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016
    Adusumilli, Susheel
    Fricker, Helen Amanda
    Siegfried, Matthew R.
    Padman, Laurie
    Paolo, Fernando S.
    Ligtenberg, Stefan R. M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) : 4086 - 4095
  • [2] Andersen, 2013, ESA LIV PLAN S 2013
  • [3] Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica
    Arthur, Jennifer F.
    Stokes, Chris R.
    Jamieson, Stewart S. R.
    Carr, J. Rachel
    Leeson, Amber A.
    [J]. CRYOSPHERE, 2020, 14 (11) : 4103 - 4120
  • [4] Antarctic surface hydrology and impacts on ice-sheet mass balance
    Bell, Robin E.
    Banwell, Alison F.
    Trusel, Luke D.
    Kingslake, Jonathan
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (12) : 1044 - 1052
  • [5] Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica
    Berger, Sophie
    Drews, Reinhard
    Helm, Veit
    Sun, Sainan
    Pattyn, Frank
    [J]. CRYOSPHERE, 2017, 11 (06) : 2675 - 2690
  • [6] Melting and freezing under Antarctic ice shelves from a combination of ice-sheet modelling and observations
    Bernales, Jorge
    Rogozhina, Irina
    Thomas, Maik
    [J]. JOURNAL OF GLACIOLOGY, 2017, 63 (240) : 731 - 744
  • [7] Grounding Line Retreat of Denman Glacier, East Antarctica, Measured With COSMO-SkyMed Radar Interferometry Data
    Brancato, V
    Rignot, E.
    Milillo, P.
    Morlighem, M.
    Mouginot, J.
    An, L.
    Scheuchl, B.
    Jeong, S.
    Rizzoli, P.
    Bello, J. L. Bueso
    Prats-Iraola, P.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (07)
  • [8] Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet
    Brunt, K. M.
    Neumann, T. A.
    Smith, B. E.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (22) : 13072 - 13078
  • [9] Global sea-level budget 1993-present
    Cazenave, Anny
    Meyssignac, Benoit
    Ablain, Michael
    Balmaseda, Magdalena
    Bamber, Jonathan
    Barletta, Valentina
    Beckley, Brian
    Benveniste, Jerome
    Berthier, Etienne
    Blazquez, Alejandro
    Boyer, Tim
    Caceres, Denise
    Chambers, Don
    Champollion, Nicolas
    Chao, Ben
    Chen, Jianli
    Cheng, Lijing
    Church, John A.
    Chuter, Stephen
    Cogley, J. Graham
    Dangendorf, Soenke
    Desbruyeres, Damien
    Doell, Petra
    Domingues, Catia
    Falk, Ulrike
    Famiglietti, James
    Fenoglio-Marc, Luciana
    Forsberg, Rene
    Galassi, Gaia
    Gardner, Alex
    Groh, Andreas
    Hamlington, Benjamin
    Hogg, Anna
    Horwath, Martin
    Humphrey, Vincent
    Husson, Laurent
    Ishii, Masayoshi
    Jaeggi, Adrian
    Jevrejeva, Svetlana
    Johnson, Gregory
    Kolodziejczyk, Nicolas
    Kusche, Juergen
    Lambeck, Kurt
    Landerer, Felix
    Leclercq, Paul
    Legresy, Benoit
    Leuliette, Eric
    Llovel, William
    Longuevergne, Laurent
    Loomis, Bryant D.
    [J]. EARTH SYSTEM SCIENCE DATA, 2018, 10 (03) : 1551 - 1590
  • [10] Antarctic ice shelf thickness from CryoSat-2 radar altimetry
    Chuter, S. J.
    Bamber, J. L.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (24) : 10721 - 10729