An Occlusion-Aware RGB-D Visual Object Tracking Method Based on Siamese Network

被引:4
作者
Zhang, Wenli [1 ]
Yang, Kun [1 ]
Xin, Yitao [1 ]
Meng, Rui [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
来源
PROCEEDINGS OF 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2020) | 2020年
关键词
Siamese network; Occlusion-aware; RGBD tracking; Visual object tracking;
D O I
10.1109/ICSP48669.2020.9320907
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, Siamese trackers have been extensively studied because of their high accuracy and speed. However, when the target is occluded by other objects, the result will be greatly drifted, which affects the quality of the tracking results. This study based on the RGB-D data proposes an object tracking method integrating a target occlusion estimation module and a target location correction module, called Siamese-Occlusion-Correction (SiamOC). When a target is occluded, these modules can help the Siamese tracker correct the target location. In this paper, experiments demonstrate that the method which is the real-time tracker has achieved competitive results on the CDTB dataset.
引用
收藏
页码:327 / 332
页数:6
相关论文
共 32 条
  • [1] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [2] [Anonymous], 2010, INT J COMPUT VISION, DOI DOI 10.1007/s11263-009-0275-4
  • [3] [Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.90
  • [4] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [5] 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration
    Bibi, Adel
    Zhang, Tianzhu
    Ghanem, Bernard
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1439 - 1448
  • [6] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939
  • [7] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [8] Hong Wu, 2010, 2010 2nd International Conference on Industrial Mechatronics and Automation (ICIMA 2010), P409, DOI 10.1109/ICINDMA.2010.5538284
  • [9] Jayasinghe J., 2019, HIGHWAYS TRAFFIC SUR
  • [10] Tracking-Learning-Detection
    Kalal, Zdenek
    Mikolajczyk, Krystian
    Matas, Jiri
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1409 - 1422