Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data

被引:9
|
作者
Park, Joseph [1 ,2 ]
Pao, Gerald M. [3 ,4 ]
Sugihara, George [5 ]
Stabenau, Erik [2 ]
Lorimer, Thomas [5 ]
机构
[1] United Nations Comprehens Nucl Test Ban Treaty Or, Dept Engn & Dev, Vienna, Austria
[2] US Dept Interior, South Florida Nat Resources Ctr, Homestead, FL 33031 USA
[3] Salk Inst Biol Studies, MCBL 4, La Jolla, CA 92037 USA
[4] Okinawa Inst Sci & Technol Grad Univ, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
[5] Univ Calif San Diego, Scripps Inst Oceanog Org, La Jolla, CA 92037 USA
关键词
Empirical mode decomposition; Empirical dynamic modeling; Empirical mode modeling; Data-driven analysis; Nonlinear systems; FLORIDA BAY; DIE-OFF; DECOMPOSITION; EQUATION;
D O I
10.1007/s11071-022-07311-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Data-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.
引用
收藏
页码:2147 / 2160
页数:14
相关论文
共 50 条
  • [41] Data-driven harmonic output regulation of a class of nonlinear systems
    Hu, Zhongjie
    De Persis, Claudio
    Simpson-Porco, John W.
    Tesi, Pietro
    SYSTEMS & CONTROL LETTERS, 2025, 200
  • [42] Data-Driven Nonlinear State Observation using Video Measurements
    Weeks, Cormak
    Tang, Wentao
    IFAC PAPERSONLINE, 2024, 58 (14): : 787 - 792
  • [43] Data-driven modeling for damping and positioning control of gantry crane
    Maksakov, Anton
    Golovin, Ievgen
    Shysh, Myroslav
    Palis, Stefan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 197
  • [44] DATA-DRIVEN FILTERED REDUCED ORDER MODELING OF FLUID FLOWS
    Xie, X.
    Mohebujjaman, M.
    Rebholz, L. G.
    Iliescu, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03) : B834 - B857
  • [45] DATA-DRIVEN CLOSURES AND ASSIMILATION FOR STIFF MULTISCALE RANDOM DYNAMICS
    Maltba, Tyler e.
    Zhao, Hongli
    Maldonado, D. adrian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2025, 47 (01) : C52 - C76
  • [46] A Frequency-Based Ground Motion Clustering Approach for Data-Driven Surrogate Modeling of Bridges
    Liao, Yuchen
    Zhang, Ruiyang
    Wu, Gang
    Sun, Hao
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (09)
  • [47] Data-driven modeling of the chaotic thermal convection in an annular thermosyphon
    Loiseau, Jean-Christophe
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (04) : 339 - 365
  • [48] Data-driven optimal modeling and prediction of human brucellosis in China
    Liu, Ying-Ping
    Sun, Gui-Quan
    NONLINEAR DYNAMICS, 2024, : 9111 - 9131
  • [49] Data-driven modeling of the wake behind a wind turbine array
    Ali, Naseem
    Cal, Raul Bayoan
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (03)
  • [50] A Data-driven Koopman Modeling Framework With Application to Soft Robots
    Han, Lvpeng
    Peng, Kerui
    Chen, Wangxing
    Liu, Zhaobing
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2025, 23 (01) : 249 - 261