Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data

被引:9
|
作者
Park, Joseph [1 ,2 ]
Pao, Gerald M. [3 ,4 ]
Sugihara, George [5 ]
Stabenau, Erik [2 ]
Lorimer, Thomas [5 ]
机构
[1] United Nations Comprehens Nucl Test Ban Treaty Or, Dept Engn & Dev, Vienna, Austria
[2] US Dept Interior, South Florida Nat Resources Ctr, Homestead, FL 33031 USA
[3] Salk Inst Biol Studies, MCBL 4, La Jolla, CA 92037 USA
[4] Okinawa Inst Sci & Technol Grad Univ, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
[5] Univ Calif San Diego, Scripps Inst Oceanog Org, La Jolla, CA 92037 USA
关键词
Empirical mode decomposition; Empirical dynamic modeling; Empirical mode modeling; Data-driven analysis; Nonlinear systems; FLORIDA BAY; DIE-OFF; DECOMPOSITION; EQUATION;
D O I
10.1007/s11071-022-07311-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Data-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.
引用
收藏
页码:2147 / 2160
页数:14
相关论文
共 50 条
  • [31] Data-driven nonlinear reduced-order modeling of unsteady fluid-structure interactions
    Zhang, Xinshuai
    Ji, Tingwei
    Xie, Fangfang
    Zheng, Changdong
    Zheng, Yao
    PHYSICS OF FLUIDS, 2022, 34 (05)
  • [32] Data-Driven Multimodel Predictive Control for Multirate Sampled-Data Nonlinear Systems
    Han, Honggui
    Fu, Shijia
    Sun, Haoyuan
    Qiao, Junfei
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 20 (03) : 2182 - 2194
  • [33] A Data-Driven Model Approach for DayWise Stock Prediction
    Unnithan, Nidhin A.
    Gopalakrishnan, E. A.
    Menon, Vijay Krishna
    Soman, K. P.
    EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY, ICERECT 2018, 2019, 545 : 149 - 158
  • [34] Data-Driven Policy Iteration for Nonlinear Optimal Control Problems
    Possieri, Corrado
    Sassano, Mario
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7365 - 7376
  • [35] Physics-Informed Data-Driven Autoregressive Nonlinear Filter
    Liu, Hanyu
    Sun, Xiucong
    Chen, Yuran
    Wang, Xinlong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 846 - 850
  • [36] Data-driven inversion-based control of nonlinear systems
    Formentin, Simone
    Novara, Carlo
    Savaresi, Sergio M.
    Milanese, Mario
    IFAC PAPERSONLINE, 2015, 48 (28): : 1343 - 1348
  • [37] Fast data-driven model reduction for nonlinear dynamical systems
    Axas, Joar
    Cenedese, Mattia
    Haller, George
    NONLINEAR DYNAMICS, 2023, 111 (09) : 7941 - 7957
  • [38] Probabilistic Data-Driven Invariance for Constrained Control of Nonlinear Systems
    Kashani, Ali
    Strong, Amy K.
    Bridgeman, Leila J.
    Danielson, Claus
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3165 - 3170
  • [39] Data-Driven Feedback Domination Control of a Class of Nonlinear Systems
    Li, Jinjiang
    Hu, Kaijian
    Liu, Tao
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1739 - 1744
  • [40] Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4978 - 4985