Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data

被引:9
|
作者
Park, Joseph [1 ,2 ]
Pao, Gerald M. [3 ,4 ]
Sugihara, George [5 ]
Stabenau, Erik [2 ]
Lorimer, Thomas [5 ]
机构
[1] United Nations Comprehens Nucl Test Ban Treaty Or, Dept Engn & Dev, Vienna, Austria
[2] US Dept Interior, South Florida Nat Resources Ctr, Homestead, FL 33031 USA
[3] Salk Inst Biol Studies, MCBL 4, La Jolla, CA 92037 USA
[4] Okinawa Inst Sci & Technol Grad Univ, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
[5] Univ Calif San Diego, Scripps Inst Oceanog Org, La Jolla, CA 92037 USA
关键词
Empirical mode decomposition; Empirical dynamic modeling; Empirical mode modeling; Data-driven analysis; Nonlinear systems; FLORIDA BAY; DIE-OFF; DECOMPOSITION; EQUATION;
D O I
10.1007/s11071-022-07311-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Data-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.
引用
收藏
页码:2147 / 2160
页数:14
相关论文
共 50 条
  • [21] Designing Experiments for Data-Driven Control of Nonlinear Systems
    De Persis, Claudio
    Tesi, Pietro
    IFAC PAPERSONLINE, 2021, 54 (09): : 285 - 290
  • [22] Constrained Data-Driven Controller Tuning for Nonlinear Systems
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Preitl, Stefan
    Dragos, Claudia-Adina
    Petriu, Emil M.
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3404 - 3409
  • [23] Data-Driven MPC for Nonlinear Systems with Reinforcement Learning
    Li, Yiran
    Wang, Qian
    Sun, Zhongqi
    Xia, Yuanqing
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2404 - 2409
  • [24] Data-Driven Observability Analysis for Nonlinear Stochastic Systems
    Massiani, Pierre-Francois
    Buisson-Fenet, Mona
    Solowjow, Friedrich
    Di Meglio, Florent
    Trimpe, Sebastian
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) : 4042 - 4049
  • [25] Data-driven modeling of phosphorus (P) dynamics in low-P stormwater wetlands
    Juston, John M.
    Kadlec, Robert H.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 118 : 226 - 240
  • [26] Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
    Cenedese, Mattia
    Axas, Joar
    Baeuerlein, Bastian
    Avila, Kerstin
    Haller, George
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [27] Anomaly Detection in Flight Recorder Data: A Dynamic Data-driven Approach
    Das, Santanu
    Sarkar, Soumalya
    Ray, Asok
    Srivastava, Ashok
    Simon, Donald L.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2668 - 2673
  • [28] A Data-Driven Learning Approach for Nonlinear Process Monitoring Based on Available Sensing Measurements
    Yin, Shen
    Yang, Chengming
    Zhang, Jingxin
    Jiang, Yuchen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (01) : 643 - 653
  • [29] Stability preserving data-driven models with latent dynamics
    Luo, Yushuang
    Li, Xiantao
    Hao, Wenrui
    CHAOS, 2022, 32 (08)
  • [30] Data-Driven Identification of Nonlinear Power System Dynamics Using Output-Only Measurements
    Sharma, Pranav
    Ajjarapu, Venkataramana
    Vaidya, Umesh
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (05) : 3458 - 3468