Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data

被引:9
|
作者
Park, Joseph [1 ,2 ]
Pao, Gerald M. [3 ,4 ]
Sugihara, George [5 ]
Stabenau, Erik [2 ]
Lorimer, Thomas [5 ]
机构
[1] United Nations Comprehens Nucl Test Ban Treaty Or, Dept Engn & Dev, Vienna, Austria
[2] US Dept Interior, South Florida Nat Resources Ctr, Homestead, FL 33031 USA
[3] Salk Inst Biol Studies, MCBL 4, La Jolla, CA 92037 USA
[4] Okinawa Inst Sci & Technol Grad Univ, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
[5] Univ Calif San Diego, Scripps Inst Oceanog Org, La Jolla, CA 92037 USA
关键词
Empirical mode decomposition; Empirical dynamic modeling; Empirical mode modeling; Data-driven analysis; Nonlinear systems; FLORIDA BAY; DIE-OFF; DECOMPOSITION; EQUATION;
D O I
10.1007/s11071-022-07311-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Data-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.
引用
收藏
页码:2147 / 2160
页数:14
相关论文
共 50 条
  • [1] Empirical mode modelingA data-driven approach to recover and forecast nonlinear dynamics from noisy data
    Joseph Park
    Gerald M. Pao
    George Sugihara
    Erik Stabenau
    Thomas Lorimer
    Nonlinear Dynamics, 2022, 108 : 2147 - 2160
  • [2] Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data
    Guo, Meichen
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4210 - 4217
  • [3] Data-Driven Modeling of the Nonlinear Dynamics of Passive Lower-Limb Prosthetic Systems
    Donahue, Seth
    Kingsbury, Trevor
    Takahashi, Kota
    Major, Matthew J.
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2024, 16 (08):
  • [4] Kinetic data-driven approach to turbulence subgrid modeling
    Ortali, G.
    Gabbana, A.
    Demo, N.
    Rozza, G.
    Toschi, F.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [5] Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics
    Straesser, Robin
    Berberich, Julian
    Allgoewer, Frank
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4344 - 4351
  • [6] Data-driven approach for fault detection and isolation in nonlinear system
    Kallas, Maya
    Mourot, Gilles
    Maquin, Didier
    Ragot, Jose
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (11) : 1569 - 1590
  • [7] Transonic Aerodynamic-Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach
    Yao, Xiangjie
    Huang, Rui
    Hu, Haiyan
    Liu, Haojie
    AIAA JOURNAL, 2024, 62 (03) : 1159 - 1178
  • [8] Data-Driven Method for Nonlinear Modal Interaction Identification in Fighter Aircraft
    Chang, Benjamin J.
    Bergman, Lawrence A.
    Moore, Keegan
    Silva, Walter A.
    Vakakis, Alexander F.
    AIAA JOURNAL, 2025, 63 (02) : 772 - 782
  • [9] A Data-Driven Approach for Forecasting Current Direction With a Hybrid Model of Empirical Mode Decomposition and Warped Gaussian Process
    Liao, Xiang
    Wei, Kai
    Yang, Qingshan
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2025, 147 (02):
  • [10] Data-Driven Participation Factors for Nonlinear Systems Based on Koopman Mode Decomposition
    Netto, Marcos
    Susuki, Yoshihiko
    Mili, Lamine
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 198 - 203