Quantifying the potential of functional evidence to reclassify variants of uncertain significance in the categorical and Bayesian interpretation frameworks

被引:52
作者
Brnich, Sarah E. [1 ,2 ]
Rivera-Munoz, Edgar A. [1 ]
Berg, Jonathan S. [1 ]
机构
[1] Univ N Carolina, Sch Med, Dept Genet, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Sch Med, Curriculum Genet & Mol Biol, Chapel Hill, NC 27599 USA
关键词
ACMG/AMP guidelines; Bayesian; functional assay; variant interpretation; VUS; CLASSIFICATION; GENOMICS; RISK;
D O I
10.1002/humu.23609
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Additional variant interpretation tools are required to effectively harness genomic sequencing for clinical applications. The American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) published guidelines for clinical sequence variant interpretation, incorporating different types of data that lend varying levels of support towards a benign or pathogenic interpretation. Variants of uncertain significance (VUS) are those with either contradictory or insufficient evidence, and their uncertainty complicates patient counseling and management. Functional assays may provide a solution to evidence gaps relegating variants to the VUS category, but the impact of functional evidence in this framework has not been assessed. We employ an algorithmic analysis of the ACMG/AMP combining rules to assess how the availability of strong functional evidence could theoretically improve the ability to make a benign or pathogenic assertion. We follow this with analysis of actual evidence combinations met by variants through expert curations as part of the Clinical Genome Resource (ClinGen). We also examine the impact of functional evidence in a Bayesian adaptation of the ACMG/AMP framework. This lays the groundwork for an evidence-based prioritization of assay development and variant assessment by identifying genes and variants that may benefit the most from functional data.
引用
收藏
页码:1531 / 1541
页数:11
相关论文
共 20 条
[1]  
Biesecker L. G., 2018, GENETICS MED, DOI 10. 1038/gim. 2018. 42
[2]   Assessment of Functional Effects of Unclassified Genetic Variants [J].
Couch, Fergus J. ;
Rasmussen, Lene Juel ;
Hofstra, Robert ;
Monteiro, Alvaro N. A. ;
Greenblatt, Marc S. ;
de Wind, Niels .
HUMAN MUTATION, 2008, 29 (11) :1314-1326
[3]   Multiplex Genetic Testing for Cancer Susceptibility: Out on the High Wire Without a Net? [J].
Domchek, Susan M. ;
Bradbury, Angela ;
Garber, Judy E. ;
Offit, Kenneth ;
Robson, Mark E. .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (10) :1267-1270
[4]   Finding the Rare Pathogenic Variants in a Human Genome [J].
Evans, James P. ;
Powell, Bradford C. ;
Berg, Jonathan S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 317 (18) :1904-1905
[5]   Implantable cardioverter-defibrillator explantation for overdiagnosed or overtreated congenital long QT syndrome [J].
Gaba, Prakriti ;
Bos, J. Martijn ;
Cannon, Bryan C. ;
Cha, Yong-Mei ;
Friedman, Paul A. ;
Asirvatham, Samuel J. ;
Ackerman, Michael J. .
HEART RHYTHM, 2016, 13 (04) :879-885
[6]  
Gelb B. D., 2018, GENETICS MED, DOI 10. 1038/gim. 2018. 3
[7]   Genetic Evidence and Integration of Various Data Sources for Classifying Uncertain Variants Into a Single Model [J].
Goldgar, David E. ;
Easton, Douglas E. ;
Byrnes, Graham B. ;
Spurdle, Amanda B. ;
Iversen, Edwin S. ;
Greenblatt, Marc S. .
HUMAN MUTATION, 2008, 29 (11) :1265-1272
[8]   Charting a course for genomic medicine from base pairs to bedside [J].
Green, Eric D. ;
Guyer, Mark S. .
NATURE, 2011, 470 (7333) :204-213
[9]   Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar [J].
Harrison, Steven M. ;
Dolinsky, Jill S. ;
Johnson, Amy E. Knight ;
Pesaran, Tina ;
Azzariti, Danielle R. ;
Bale, Sherri ;
Chao, Elizabeth C. ;
Das, Soma ;
Vincent, Lisa ;
Rehm, Heidi L. .
GENETICS IN MEDICINE, 2017, 19 (10) :1096-1104
[10]   Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel [J].
Kelly, Melissa A. ;
Caleshu, Colleen ;
Morales, Ana ;
Buchan, Jillian ;
Wolf, Zena ;
Harrison, Steven M. ;
Cook, Stuart ;
Dillon, Mitchell W. ;
Garcia, John ;
Haverfield, Eden ;
Jongbloed, Jan D. H. ;
Macaya, Daniela ;
Manrai, Arjun ;
Orland, Kate ;
Richard, Gabriele ;
Spoonamore, Katherine ;
Thomas, Matthew ;
Thomson, Kate ;
Vincent, Lisa M. ;
Walsh, Roddy ;
Watkins, Hugh ;
Whiffin, Nicola ;
Ingles, Jodie ;
van Tintelen, J. Peter ;
Semsarian, Christopher ;
Ware, James S. ;
Hershberger, Ray ;
Funke, Birgit .
GENETICS IN MEDICINE, 2018, 20 (03) :351-359