A singular Gierer-Meinhardt system of elliptic equations

被引:29
作者
Choi, YS [1 ]
McKenna, PJ [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2000年 / 17卷 / 04期
基金
美国国家卫生研究院;
关键词
singular; Gierer-Meinhardt; elliptic system; non-quasimonotone;
D O I
10.1016/S0294-1449(00)00115-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of solutions to a singular non-quasimonotone system of equations. Such equations are a special case of the Gierer-Meinhardt equations. In the one dimensional case, the uniqueness result is also proved. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:503 / 522
页数:20
相关论文
共 21 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]   An elliptic problem arising from the unsteady transonic small disturbance equation [J].
Canic, S ;
Keyfitz, BL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :548-574
[3]   On the existence of positive solutions of quasilinear elliptic boundary value problems [J].
Choi, YS ;
Kim, EH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 155 (02) :423-442
[4]   ON A SINGULAR QUASI-LINEAR ANISOTROPIC ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
CHOI, YS ;
LAZER, AC ;
MCKENNA, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (07) :2633-2641
[5]   A singular quasilinear anisotropic elliptic boundary value problem. II [J].
Choi, YS ;
McKenna, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2925-2937
[6]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[7]  
delPino MA, 1995, T AM MATH SOC, V347, P4807
[8]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[9]   Multipeak solutions for a semilinear Neumann problem [J].
Gui, CF .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) :739-769
[10]  
Ladyzenskaja O.A., 1968, Translation of Mathematical Monographs, Am. Math. Soc. Transl., V23