Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders

被引:100
作者
Di Cristo, G. [1 ]
机构
[1] Univ Montreal, CHU Hop St Justine, Dept Pediat, Montreal, PQ H3T 1C5, Canada
关键词
brain; cortex; development-GABA; inhibition; interneurons;
D O I
10.1111/j.1399-0004.2007.00822.x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
GABAergic interneurons powerfully control the function of cortical networks. In addition, they strongly regulate cortical development by modulating several cellular processes such as neuronal proliferation, migration, differentiation and connectivity. Not surprisingly, aberrant development of GABAergic circuits has been implicated in many neurodevelopmental disorders including schizophrenia, autism and Tourette's syndrome. Unfortunately, efforts directed towards the comprehension of the mechanisms regulating GABAergic circuits formation and function have been impaired by the strikingly heterogeneity, both at the morphological and functional level, of GABAergic interneurons. Recent technical advances, including the improvement of interneurons-specific labelling techniques, have started to reveal the basic principles underlying this process. This review summarizes recent findings on the mechanisms underlying the construction of GABAergic circuits in the cortex, with a particular focus on potential implications for brain diseases with neurodevelopmental origin.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 56 条
[1]   GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss [J].
Addington, AM ;
Gornick, M ;
Duckworth, J ;
Sporn, A ;
Gogtay, N ;
Bobb, A ;
Greenstein, D ;
Lenane, M ;
Gochman, P ;
Baker, N ;
Balkissoon, R ;
Vakkalanka, RK ;
Weinberger, DR ;
Rapoport, JL ;
Straub, RE .
MOLECULAR PSYCHIATRY, 2005, 10 (06) :581-588
[2]   Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes [J].
Anderson, SA ;
Eisenstat, DD ;
Shi, L ;
Rubenstein, JLR .
SCIENCE, 1997, 278 (5337) :474-476
[3]   Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment [J].
Ango, F ;
di Cristo, G ;
Higashiyama, H ;
Bennett, V ;
Wu, P ;
Huang, ZJ .
CELL, 2004, 119 (02) :257-272
[4]  
ANGO F, 2005, SOC NEUR
[5]   Autism as a disorder of neural information processing: directions for research and targets for therapy [J].
Belmonte, MK ;
Cook, EH ;
Anderson, GM ;
Rubenstein, JLR ;
Greenough, WT ;
Beckel-Mitchener, A ;
Courchesne, E ;
Boulanger, LM ;
Powell, SB ;
Levitt, PR ;
Perry, EK ;
Jiang, YH ;
DeLorey, TM ;
Tierney, E .
MOLECULAR PSYCHIATRY, 2004, 9 (07) :646-663
[6]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[7]  
Ben-Ari Y, 2006, EPILEPTIC DISORD, V8, P91
[8]   Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period [J].
Chattopadhyaya, B ;
Di Cristo, G ;
Higashiyama, H ;
Knott, GW ;
Kuhlman, SJ ;
Welker, E ;
Huang, ZJ .
JOURNAL OF NEUROSCIENCE, 2004, 24 (43) :9598-9611
[9]  
CHATTOPADHYAYA B, IN PRESS NEURON
[10]   Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain [J].
Corbin, JG ;
Nery, S ;
Fishell, G .
NATURE NEUROSCIENCE, 2001, 4 (Suppl 11) :1177-1182