Enhancement of photovoltaic performances of Cu (In,Ga)(S,Se)2 solar cell through combination of heat-light soaking and light soaking processes

被引:27
作者
Chantana, Jakapan [1 ]
Kato, Takuya [2 ]
Sugimoto, Hiroki [2 ]
Minemoto, Takashi [1 ]
机构
[1] Ritsumeikan Univ, Dept Elect & Elect Engn, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Solar Frontier KK, Atsugi Res Ctr, Atsugi, Kanagawa 2430206, Japan
来源
PROGRESS IN PHOTOVOLTAICS | 2018年 / 26卷 / 10期
关键词
heat-light soaking; Cu; (In; Ga)(S; Se)(2); light soaking; recombination rate; thin-film solar cell; BUFFER LAYER; THIN-FILMS; RECOMBINATION; EFFICIENCY; ZN1-XMGXO; MODULES;
D O I
10.1002/pip.3031
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Potassium-treated Cu (In,Ga)(S,Se)(2) (CIGSSe)-based solar cell with power conversion efficiency (eta) of 19.4% is obtained using high transparent Cd0.75Zn0.25S/Zn0.79Mg0.21O/Zn0.88Mg0.12O:Al layers to minimize optical loss at short wavelength (similar to 520 nm) and to control total conduction band minimum alignment. To further enhance , the post treatment named HLS + LS process, including heat-light soaking (HLS) at 110 degrees C under AM 1.5G illumination followed by light soaking (LS) under AM 1.5G illumination, is conducted successively on the as-fabricated solar cell. It is revealed that HLS in the HLS + LS process mainly yields the increase in open-circuit voltage. On the other hand, LS in the HLS + LS process primarily leads to the increase in fill factor, attributable to the decrease in sheet resistance of Zn0.88Mg0.12O:Al. The HLS + LS process consequently gives rise to not only the enhancement of carrier concentration but also the decrease in the recombination rate at the buffer/absorber interface through passivating the recombination centers. As a result, 21.2%-efficient CIGSSe solar cell with the Cd0.75Zn0.25S/Zn0.79Mg0.21O/Zn0.88Mg0.12O:Al layers is attained after the HLS + LS process, which is an effective process to enhance photovoltaic performances.
引用
收藏
页码:868 / 876
页数:9
相关论文
共 32 条
[1]   Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient [J].
Bär, M ;
Bohne, W ;
Röhrich, J ;
Strub, E ;
Lindner, S ;
Lux-Steiner, MC ;
Fischer, CH ;
Niesen, TP ;
Karg, F .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3857-3860
[2]   Examination of electrical and optical properties of Zn1-xMgxO:Al fabricated by radio frequency magnetron co-sputtering [J].
Chantana, Jakapan ;
Ishino, Yuya ;
Kawabata, Koki ;
Minemoto, Takashi .
THIN SOLID FILMS, 2018, 646 :105-111
[3]   Aluminum-doped Zn1 - xMgxO as transparent conductive oxide of Cu(In, Ga)(S, Se)2-based solar cell for minimizing surface carrier recombination [J].
Chantana, Jakapan ;
Kato, Takuya ;
Sugimoto, Hiroki ;
Minemoto, Takashi .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (12) :996-1004
[4]   Thin-film Cu(In,Ga)(Se,S)2-based solar cell with (Cd,Zn)S buffer layer and Zn1-xMgxO window layer [J].
Chantana, Jakapan ;
Kato, Takuya ;
Sugimoto, Hiroki ;
Minemoto, Takashi .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (06) :431-440
[5]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[6]   Reformulation of solar cell physics to facilitate experimental separation of recombination pathways [J].
Grover, Sachit ;
Li, Jian V. ;
Young, David L. ;
Stradins, Paul ;
Branz, Howard M. .
APPLIED PHYSICS LETTERS, 2013, 103 (09)
[7]  
Hamakawa Y, 2004, SPR S PHOTON, V13, P1
[8]   The Zn(S,O,OH)/ZnMgO Buffer in Thin-Film Cu(In,Ga)(Se,S)2-Based Solar Cells Part II: Magnetron Sputtering of the ZnMgO Buffer Layer for In-Line Co-Evaporated Cu(In,Ga)Se2 Solar Cells [J].
Hariskos, D. ;
Fuchs, B. ;
Menner, R. ;
Naghavi, N. ;
Hubert, C. ;
Lincot, D. ;
Powalla, M. .
PROGRESS IN PHOTOVOLTAICS, 2009, 17 (07) :479-488
[9]   Thin-film solar cells: Device measurements and analysis [J].
Hegedus, SS ;
Shafarman, WN .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :155-176
[10]   Effects of heavy alkali elementsin Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% [J].
Jackson, Philip ;
Wuerz, Roland ;
Hariskos, Dimitrios ;
Lotter, Erwin ;
Witte, Wolfram ;
Powalla, Michael .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (08) :583-586