Graphene Oxide-Directed Tunable Assembly of MoS2 Ultrathin Nanosheets for Electrocatalytic Hydrogen Evolution

被引:5
|
作者
Sun, Hongyu [1 ]
Zhao, Yanyan [2 ]
Molhave, Kristian [1 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[2] Boston Coll, Dept Chem, Merkert Chem Ctr, 2609 Beacon St, Chestnut Hill, MA 02467 USA
来源
CHEMISTRYSELECT | 2017年 / 2卷 / 17期
关键词
graphene oxide; hydrogen evolution reaction; MoS2; self-assembly; water splitting; ACTIVE EDGE SITES; METAL DICHALCOGENIDE NANOSHEETS; CATALYTIC-ACTIVITY; PERFORMANCE; GENERATION; CHEMISTRY; GROWTH; LAYERS; FILMS;
D O I
10.1002/slct.201701177
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three dimensional (3D) hierarchical architectures based on molybdenum disulfide (MoS2) and reduced graphene oxide (rGO) are synthesized through a mixed solvothermal method. By simply increasing the amount of graphene oxide (GO) during the synthesis, the 3D assembly of MoS2 can be tuned from nanoflowers to cross-linked nanosheets firmly attached to rGO. The structural and compositional analysis show that MoS2 nanostructures in the hybrids are constituted by ultrathin nanosheets with single or a few layers, and the GO precursor is reduced as rGO simultaneously. Due to the synergetic effects of rGO nanosheets and controllable assembly in MoS2 ultrathin nanostructures, the resulting nanohybrids show optimized electrocatalytic hydrogen evolution properties in 0.5 M H2SO4 solution. This work provides a facile method to increase the efficiency of hydrogen production for MoS2 based materials and their analogues via a tunable bottom-up assembly strategy.
引用
收藏
页码:4696 / 4704
页数:9
相关论文
共 50 条
  • [31] Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution
    Li, Yinchang
    He, Bing
    Liu, Xueqin
    Hu, Xiaoqin
    Huang, Jing
    Ye, Siqin
    Shu, Zhu
    Wang, Yang
    Li, Zhen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (16) : 8070 - 8078
  • [32] The effect of reduced graphene oxide on MoS2 for the hydrogen evolution reaction in acidic solution
    Lv Jinlong
    Yang Meng
    Liang Tongxiang
    Ken Suzuki
    Hideo Miura
    CHEMICAL PHYSICS LETTERS, 2017, 678 : 212 - 215
  • [33] Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution
    Zhu, Peng
    Chen, Yu
    Zhou, Yu
    Yang, Zhixiong
    Wu, Di
    Xiong, Xiang
    Ouyang, Fangping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (31) : 14087 - 14095
  • [34] Fabrication of MoS2/reduced graphene oxide hybrid as an earth-abundant hydrogen evolution electrocatalyst
    Yu, Zheting
    Ye, Jianbo
    Chen, Weixiang
    Xu, Shurui
    MATERIALS LETTERS, 2017, 188 : 48 - 51
  • [35] Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution
    Yang, Linjing
    Zhou, Weijia
    Lu, Jia
    Hou, Dongman
    Ke, Yunting
    Li, Guoqiang
    Tang, Zhenghua
    Kang, Xiongwu
    Chen, Shaowei
    NANO ENERGY, 2016, 22 : 490 - 498
  • [36] MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution
    Hu, Lin
    Song, Xiu-Feng
    Zhang, Sheng-Li
    Zeng, Hai-Bo
    Zhang, Xue-Ji
    Marks, Robert
    Shan, Dan
    JOURNAL OF CATALYSIS, 2018, 366 : 8 - 15
  • [37] Oxygen-Incorporated MoS2 Nanosheets with Expanded Interlayers for Hydrogen Evolution Reaction and Pseudocapacitor Applications
    Zhou, Jiang
    Fang, Guozhao
    Pan, Anqiang
    Liang, Shuquan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) : 33681 - 33689
  • [38] General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction
    Kiriya, Daisuke
    Lobaccaro, Peter
    Nyein, Hnin Yin Yin
    Taheri, Peyman
    Hettick, Mark
    Shiraki, Hiroshi
    Sutter-Fella, Carolin M.
    Zhao, Peida
    Gao, Wei
    Maboudian, Roya
    Ager, Joel W.
    Javey, Ali
    NANO LETTERS, 2016, 16 (07) : 4047 - 4053
  • [39] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Yang, Qiangbin
    He, Yi
    Fan, Yi
    Li, Fei
    Chen, Xi
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (10) : 7413 - 7418
  • [40] Aun atomic clusters on MoS2 nanosheets for hydrogen evolution reaction
    Tian, Jiaqi
    Hou, Lei
    Pei, Wei
    Yu, Xueke
    SURFACES AND INTERFACES, 2025, 56