Multiscale holospectrum convolutional neural network-based fault diagnosis of rolling bearings with variable operating conditions

被引:26
|
作者
Zhang, Xining [1 ]
Liu, Shuyu [1 ]
Li, Lin [1 ]
Lei, Jiangeng [1 ]
Chang, Ge [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
convolutional neural network; feature fusion; variable operating condition; fault diagnosis; FEATURE-EXTRACTION; MACHINERY; SPEED;
D O I
10.1088/1361-6501/ac05f8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, the convolutional neural network (CNN) has been widely used in the field of intelligent fault diagnosis. However, each convolutional layer of CNN cannot take the overall and local information into account, and the feature extraction ability of CNN with fewer layers is weak. These circumstances lead to poor performance of CNN in practical fault diagnosis with variable operating conditions. To solve these problems, this paper proposes a multiscale holospectrum CNN (MH-CNN) based on the methods of two-dimensional multiscale feature fusion and decision-level feature fusion. First, the continuous wavelet transform is used to map the time-domain signal to the time-frequency plane to fully reflect the complex information contained in the signal. Then the two-dimensional multiscale feature fusion is introduced to extract features at different scales, which can take both overall and local information into account. Finally the decision-level feature fusion is introduced to fuse the features from signal in X, Y directions in the decision-level of CNN, which serves to enhance the features. By combining these methods, the proposed MH-CNN can extract more distinguishable features with a shallow structure, which can ensure the classification capability while avoiding the overfitting problem caused by overly complex networks. The effectiveness of the MH-CNN is verified using complicated data sets consisting of 16 rolling bearings with four different health conditions, two speeds and three loads. Results show that the proposed MH-CNN achieves a correct rate of 99.8% for rolling bearing fault diagnosis under variable operating conditions, which is much higher than other comparative methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multiscale Transfer Learning Based Fault Diagnosis of Rolling Bearings
    Tang, Rong
    Sun, Xinjie
    Wang, Shubiao
    Chen, Zhe
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 366 - 375
  • [42] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [43] Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
    Wang Qingrong
    Yang Lei
    Wang Songsong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [44] Multiscale Residual Attention Convolutional Neural Network for Bearing Fault Diagnosis
    Jia, Linshan
    Chow, Tommy W. S.
    Wang, Yu
    Yuan, Yixuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [45] Multiscale Convolutional Neural Network With Feature Alignment for Bearing Fault Diagnosis
    Chen, Junbin
    Huang, Ruyi
    Zhao, Kun
    Wang, Wei
    Liu, Longcan
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [46] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [47] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [48] Research on Fault Diagnosis Algorithm Based on Convolutional Neural Network
    Li, Xiaolong
    Wang, Sen
    Zhou, Wei
    Huang, Qi
    Feng, Bowen
    Liu, Lilan
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 8 - 12
  • [49] Cross-Conditions Fault Diagnosis of Rolling Bearings Based on Dual Domain Adversarial Network
    Jiang, Yonghua
    Shi, Zhuoqi
    Tang, Chao
    Sun, Jianfeng
    Zheng, Linjie
    Qiu, Zengjie
    He, Yian
    Li, Guoqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [50] Towards a Fault Diagnosis Method for Rolling Bearings with Time-Frequency Region-Based Convolutional Neural Network
    Tang, Jiahui
    Wu, Jimei
    Hu, Bingbing
    Qing, Jiajuan
    MACHINES, 2022, 10 (12)