Right Ventricular Fiber Structure as a Compensatory Mechanism in Pressure Overload: A Computational Study

被引:10
作者
Gomez, Arnold D. [1 ]
Zou, Huashan [2 ]
Bowen, Megan E. [3 ]
Liu, Xiaoqing [4 ]
Hsu, Edward W. [5 ]
McKellar, Stephen H. [6 ]
机构
[1] Johns Hopkins Univ, Elect & Comp Engn Dept, 3400 North Charles St,RM Clark 201B, Baltimore, MD 21218 USA
[2] Univ Utah, Bioengn Dept, 36 S Wasatch Dr,SMBB RM 3100, Salt Lake City, UT 84112 USA
[3] Univ Utah, Surg Dept, 30 N 1900 E,RM 3B205, Salt Lake City, UT 84112 USA
[4] Univ Utah, Cardiothorac Div, Surg Dept, 2000 Circle Hope,RM LL376, Salt Lake City, UT 84112 USA
[5] Univ Utah, Bioengn Dept, 36 S Wasatch Dr,SMBB RM 1242, Salt Lake City, UT 84112 USA
[6] Univ Utah, Cardiothorac Div, Surg Dept, 30 N 1900 E,RM 3B205, Salt Lake City, UT 84112 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2017年 / 139卷 / 08期
基金
美国国家卫生研究院;
关键词
right ventricular failure; pressure overload; computational mechanics; CARDIOVASCULAR MAGNETIC-RESONANCE; MOLECULAR-MECHANISMS; PULMONARY ARTERIAL; STRAIN; MYOCARDIUM; ORIENTATION; FAILURE; STRESS; SEPTUM; RABBIT;
D O I
10.1115/1.4036485
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Right ventricular failure (RVF) is a lethal condition in diverse pathologies. Pressure overload is the most common etiology of RVF, but our understanding of the tissue structure remodeling and other biomechanical factors involved in RVF is limited. Some remodeling patterns are interpreted as compensatory mechanisms including myocyte hypertrophy, extracellular fibrosis, and changes in fiber orientation. However, the specific implications of these changes, especially in relation to clinically observable measurements, are difficult to investigate experimentally. In this computational study, we hypothesized that, with other variables constant, fiber orientation alteration provides a quantifiable and distinct compensatory mechanism during RV pressure overload (RVPO). Numerical models were constructed using a rabbit model of chronic pressure overload RVF based on intraventricular pressure measurements, CINE magnetic resonance imaging (MRI), and diffusion tensor MRI (DT-MRI). Biventricular simulations were conducted under normotensive and hypertensive boundary conditions using variations in RV wall thickness, tissue stiffness, and fiber orientation to investigate their effect on RV pump function. Our results show that a longitudinally aligned myocardial fiber orientation contributed to an increase in RV ejection fraction (RVEF). This effect was more pronounced in response to pressure overload. Likewise, models with longitudinally aligned fiber orientation required a lesser contractility for maintaining a target RVEF against elevated pressures. In addition to increased wall thickness and material stiffness (diastolic compensation), systolic mechanisms in the forms of myocardial fiber realignment and changes in contractility are likely involved in the overall compensatory responses to pressure overload.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Modeling the relation between cardiac pump function and myofiber mechanics [J].
Arts, T ;
Bovendeerd, P ;
Delhaas, T ;
Prinzen, F .
JOURNAL OF BIOMECHANICS, 2003, 36 (05) :731-736
[2]   On the theory of reactive mixtures for modeling biological growth [J].
Ateshian G.A. .
Biomechanics and Modeling in Mechanobiology, 2007, 6 (6) :423-445
[3]   A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models [J].
Bayer, J. D. ;
Blake, R. C. ;
Plank, G. ;
Trayanova, N. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (10) :2243-2254
[4]   Chronic Pulmonary Artery Pressure Elevation Is Insufficient to Explain Right Heart Failure [J].
Bogaard, Harm J. ;
Natarajan, Ramesh ;
Henderson, Scott C. ;
Long, Carlin S. ;
Kraskauskas, Donatas ;
Smithson, Lisa ;
Ockaili, Ramzi ;
McCord, Joe M. ;
Voelkel, Norbert F. .
CIRCULATION, 2009, 120 (20) :1951-U20
[5]   The Right Ventricle Under Pressure Cellular and Molecular Mechanisms of Right-Heart Failure in Pulmonary Hypertension [J].
Bogaard, Harm J. ;
Abe, Kohtaro ;
Noordegraaf, Anton Vonk ;
Voelkel, Norbert F. .
CHEST, 2009, 135 (03) :794-804
[6]   Distinct loading conditions reveal various patterns of right ventricular adaptation [J].
Borgdorff, Marinus A. J. ;
Bartelds, Beatrijs ;
Dickinson, Michael G. ;
Steendijk, Paul ;
de Vroomen, Maartje ;
Berger, Rolf M. F. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2013, 305 (03) :H354-H364
[7]   DEPENDENCE OF LOCAL LEFT-VENTRICULAR WALL MECHANICS ON MYOCARDIAL FIBER ORIENTATION - A MODEL STUDY [J].
BOVENDEERD, PHM ;
ARTS, T ;
HUYGHE, JM ;
VANCAMPEN, DH ;
RENEMAN, RS .
JOURNAL OF BIOMECHANICS, 1992, 25 (10) :1129-1140
[8]   Acute right ventricular pressure overload compromises left ventricular function by altering septal strain and rotation [J].
Chua, Jason ;
Zhou, Wei ;
Ho, Jonathan K. ;
Patel, Nikhil A. ;
Mackensen, G. Burkhard ;
Mahajan, Aman .
JOURNAL OF APPLIED PHYSIOLOGY, 2013, 115 (02) :186-193
[9]   Three-dimensional residual strain in midanterior canine left ventricle [J].
Costa, KD ;
MayNewman, K ;
Farr, D ;
ODell, WG ;
McCulloch, AD ;
Omens, JH .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1997, 273 (04) :H1968-H1976
[10]   CHANGES IN THE RADIUS OF CURVATURE OF THE VENTRICULAR SEPTUM AT END DIASTOLE DURING PULMONARY ARTERIAL AND AORTIC CONSTRICTIONS IN THE DOG [J].
DONG, SJ ;
SMITH, ER ;
TYBERG, JV .
CIRCULATION, 1992, 86 (04) :1280-1290