A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations

被引:8
作者
Albers, Jasper [1 ,2 ,8 ,9 ]
Pronold, Jari [1 ,2 ,8 ,9 ]
Kurth, Anno Christopher [1 ,2 ,8 ,9 ]
Vennemo, Stine Brekke [3 ]
Haghighi Mood, Kaveh [4 ]
Patronis, Alexander [4 ]
Terhorst, Dennis [1 ,8 ,9 ]
Jordan, Jakob [5 ]
Kunkel, Susanne [3 ]
Tetzlaff, Tom [1 ,8 ,9 ]
Diesmann, Markus [1 ,6 ,7 ,8 ,9 ]
Senk, Johanna [1 ,8 ,9 ]
机构
[1] Julich Res Ctr, Inst Neurosci & Med INM 6, Julich, Germany
[2] Rhein Westfal TH Aachen, Aachen, Germany
[3] Norwegian Univ Life Sci, Fac Sci & Technol, As, Norway
[4] Julich Res Ctr, Julich Supercomp Ctr JSC, Julich, Germany
[5] Univ Bern, Dept Physiol, Bern, Switzerland
[6] Rhein Westfal TH Aachen, Fac 1, Dept Phys, Aachen, Germany
[7] Rhein Westfal TH Aachen, Sch Med, Dept Psychiat Psychotherapy & Psychosomat, Aachen, Germany
[8] Julich Res Ctr, Inst Adv Simulat IAS 6, Julich, Germany
[9] Julich Res Ctr, JARA Inst BrainStructure Funct Relationships INM 1, Julich, Germany
关键词
spiking neuronal networks; benchmarking; large-scale simulation; high-performance computing; workflow; metadata; SPIKING; DYNAMICS; MODEL;
D O I
10.3389/fninf.2022.837549
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern computational neuroscience strives to develop complex network models to explain dynamics and function of brains in health and disease. This process goes hand in hand with advancements in the theory of neuronal networks and increasing availability of detailed anatomical data on brain connectivity. Large-scale models that study interactions between multiple brain areas with intricate connectivity and investigate phenomena on long time scales such as system-level learning require progress in simulation speed. The corresponding development of state-of-the-art simulation engines relies on information provided by benchmark simulations which assess the time-to-solution for scientifically relevant, complementary network models using various combinations of hardware and software revisions. However, maintaining comparability of benchmark results is difficult due to a lack of standardized specifications for measuring the scaling performance of simulators on high-performance computing (HPC) systems. Motivated by the challenging complexity of benchmarking, we define a generic workflow that decomposes the endeavor into unique segments consisting of separate modules. As a reference implementation for the conceptual workflow, we develop beNNch: an open-source software framework for the configuration, execution, and analysis of benchmarks for neuronal network simulations. The framework records benchmarking data and metadata in a unified way to foster reproducibility. For illustration, we measure the performance of various versions of the NEST simulator across network models with different levels of complexity on a contemporary HPC system, demonstrating how performance bottlenecks can be identified, ultimately guiding the development toward more efficient simulation technology.
引用
收藏
页数:21
相关论文
共 83 条
[1]   Arbor - a morphologically-detailed neural network simulation library for contemporary high-performance computing architectures [J].
Akar, Nora Abi ;
Cumming, Ben ;
Karakasis, Vasileios ;
Kuesters, Anne ;
Klijn, Wouter ;
Peyser, Alexander ;
Yates, Stuart .
2019 27TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 2019, :274-282
[2]  
Akhmerov A., 2019, RAISING PROFILE RES, DOI DOI 10.5281/ZENODO.3378572
[3]  
Albers J., 2022, ZENEDO, DOI [10.5281/zenodo.6092768, DOI 10.5281/ZENODO.6092768]
[4]  
[Anonymous], 2006, The NEURON Book, DOI DOI 10.1017/CBO9780511541612
[5]  
[Anonymous], 2008, OPENMP APPL PROGRAM
[6]  
Beyeler M, 2015, IEEE IJCNN
[7]   RALLPACKS - A SET OF BENCHMARKS FOR NEURONAL SIMULATORS [J].
BHALLA, US ;
BILITCH, DH ;
BOWER, JM .
TRENDS IN NEUROSCIENCES, 1992, 15 (11) :453-458
[8]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[9]   Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons [J].
Brunel, N .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 8 (03) :183-208
[10]  
Chou TS, 2018, IEEE IJCNN