Stochastic model updating-Covariance matrix adjustment from uncertain experimental modal data

被引:89
作者
Govers, Y. [1 ]
Link, M. [2 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt eV, Inst Aeroelast, D-37085 Gottingen, Germany
[2] Univ Kassel, Inst Stat & Dynam, D-34109 Kassel, Germany
关键词
Stochastic model updating; Uncertainty; Inverse problems;
D O I
10.1016/j.ymssp.2009.10.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With deterministic methods finite element model parameters are updated by using a single set of experimental data. As a consequence the corrected analytical model only reflects this single test case. However, test data are inherently exposed to uncertainty due to measurement errors, different modal extraction techniques, etc. Even a more relevant factor for variability originates from production tolerances and consequently the question arises, how to describe model parameters from the stochastic point of view? Therefore it would be desirable to use statistical properties of multiple sets of experimental and to consider the update parameters as random variables. This paper presents an inverse approach how to identify a stochastic finite element model from uncertain test data. In detail, this work demonstrates a method to adjust design parameter means and their related covariance matrix from multiple sets of experimental modal data. Results are shown from a numerical example. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:696 / 706
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1977, Solution of illposed problems
[2]   STATISTICAL IDENTIFICATION OF STRUCTURES [J].
COLLINS, JD ;
HART, GC ;
HASSELMAN, TK ;
KENNEDY, B .
AIAA JOURNAL, 1974, 12 (02) :185-190
[3]   RATES OF CHANGE EIGENVALUES AND EIGENVECTORS [J].
FOX, RL ;
KAPOOR, MP .
AIAA JOURNAL, 1968, 6 (12) :2426-&
[4]  
Friswell M., 2013, Finite element model updating in structural dynamics
[5]  
Govers Y, 2006, Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, P4161
[6]   An improved perturbation method for stochastic finite element model updating [J].
Hua, X. G. ;
Ni, Y. Q. ;
Chen, Z. Q. ;
Ko, J. M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (13) :1845-1864
[7]   Perturbation methods for the estimation of parameter variability in stochastic model updating [J].
Khodaparast, Harned Haddad ;
Mottershead, John E. ;
Friswell, Michael I. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (08) :1751-1773
[8]  
LADEVEZE P, 1994, INVERSE PROBLEMS IN ENGINEERING MECHANICS, P251
[9]  
LINK M, 1999, MODAL ANAL TESTING, P281
[10]   Stochastic model updating: Part 1 - theory and simulated example [J].
Mares, C. ;
Mottershead, J. E. ;
Friswell, M. I. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (07) :1674-1695