Carbon intensity of global existing and future hydropower reservoirs

被引:23
作者
Li, Mingxu [1 ]
He, Nianpeng [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Reservoir GHG emissions; Water depth; Trophic level; Hydropower generation; Low-carbon future; GREENHOUSE-GAS EMISSIONS; HYDROELECTRIC RESERVOIRS; DAMS; CONNECTIVITY; IMPACTS; LAKES;
D O I
10.1016/j.rser.2022.112433
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As the largest renewable electricity source, hydropower represents an alternative to fossil fuels to achieve a low carbon future. However, increasing evidence suggests that hydropower reservoirs are an important source of biogenic greenhouse gases (GHGs), albeit with large uncertainties. Combining spatially resolved assessments of GHG fluxes and hydroelectric capacity databases, we assessed that global GHG emissions from reservoirs is 0.38 Pg CO2 eq.yr(-1), accounting for 1.0% of global anthropogenic emissions. The median carbon intensity for hydropower is -63.0 kg CO(2)eq. MWh-1, which is lower than that for fossil fuels, but higher than that for other renewable energy sources. High carbon intensity is mostly linked to shallow (water storage depth < 20 m) and eutrophic reservoirs. Furthermore, we found that the reservoir carbon intensity (CI) value would be markedly increased to 131.5 kg CO2eq. MWh(-1) when considering the dams under construction and planning. A low-carbon future will benefit from optimal dam planning and management measures, i.e., applying sludge removal treatments, thereby reducing the proportion of shallow reservoirs and anthropogenic pollution.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning [J].
Almeida, Rafael M. ;
Shi, Qinru ;
Gomes-Selman, Jonathan M. ;
Wu, Xiaojian ;
Xue, Yexiang ;
Angarita, Hector ;
Barros, Nathan ;
Forsberg, Bruce R. ;
Garcia-Villacorta, Roosevelt ;
Hamilton, Stephen K. ;
Melack, John M. ;
Montoya, Mariana ;
Perez, Guillaume ;
Sethi, Suresh A. ;
Gomes, Carla P. ;
Flecker, Alexander S. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]  
[Anonymous], FCCC/CP/2015/10/Add.1 Decision 1/CP.21
[3]  
Association IH, 2010, GHG MEASUREMENT GUID
[4]   Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide [J].
Barbarossa, Valerio ;
Schmitt, Rafael J. P. ;
Huijbregts, Mark A. J. ;
Zarfl, Christiane ;
King, Henry ;
Schipper, Aafke M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (07) :3648-3655
[5]   Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude [J].
Barros, Nathan ;
Cole, Jonathan J. ;
Tranvik, Lars J. ;
Prairie, Yves T. ;
Bastviken, David ;
Huszar, Vera L. M. ;
del Giorgio, Paul ;
Roland, Fabio .
NATURE GEOSCIENCE, 2011, 4 (09) :593-596
[6]   Freshwater Methane Emissions Offset the Continental Carbon Sink [J].
Bastviken, David ;
Tranvik, Lars J. ;
Downing, John A. ;
Crill, Patrick M. ;
Enrich-Prast, Alex .
SCIENCE, 2011, 331 (6013) :50-50
[7]   Eutrophication will increase methane emissions from lakes and impoundments during the 21st century [J].
Beaulieu, Jake J. ;
DelSontro, Tonya ;
Downing, John A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Accounting for GHG net reservoir emissions of hydropower in Ecuador [J].
Briones Hidrovo, Andrei ;
Uche, Javier ;
Martinez-Gracia, Amaya .
RENEWABLE ENERGY, 2017, 112 :209-221
[9]  
Bruckner T, 2014, CLIMATE CHANGE 2014: MITIGATION OF CLIMATE CHANGE, P1329
[10]  
Byers L., 2018, World Resour Inst, V18