CANONICAL MODELS FOR HOLOMORPHIC ITERATION

被引:25
作者
Arosio, Leandro [1 ]
Bracci, Filippo [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Iteration theory; linear fractional models; dynamics in several complex variables; LINEAR FRACTIONAL MAPS; COMPOSITION OPERATORS; UNIT BALL; ANGULAR DERIVATIVES; LINDELOF PRINCIPLE; ANALYTIC-FUNCTIONS; SCHRODER EQUATION; COMPLEX-VARIABLES; FIXED-POINTS; SELF-MAPS;
D O I
10.1090/tran/6593
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct canonical intertwining semi-models with Kobayashi hyperbolic base space for holomorphic self-maps of complex manifolds which are univalent on some absorbing cocompact hyperbolic domain. In particular, in the unit ball we solve the Valiron equation for hyperbolic univalent self-maps and for hyperbolic semigroups.
引用
收藏
页码:3305 / 3339
页数:35
相关论文
共 44 条
[1]  
Abate M, 2004, LECT NOTES MATH, V1848, P1
[2]   THE LINDELOF PRINCIPLE AND THE ANGULAR DERIVATIVE IN STRONGLY CONVEX DOMAINS [J].
ABATE, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1990, 54 :189-228
[3]  
Abate M., 2014, PREPRINT
[4]  
Abate M, 1989, RES LECT NOTES MATH
[5]  
Aizenberg L., 2002, COMPLEX VAR THEORY A, V47, P109
[6]  
[Anonymous], 1991, SEVERAL COMPLEX VARI
[7]  
[Anonymous], 1884, ANN SCI COLE NORM SU
[8]  
Arnold V. I., 1983, GRUND MATH WISS, V250
[9]   Solving the Loewner PDE in complete hyperbolic starlike domains of CN [J].
Arosio, Leandro ;
Bracci, Filippo ;
Wold, Erlend Fornaess .
ADVANCES IN MATHEMATICS, 2013, 242 :209-216
[10]   BASINS OF ATTRACTION IN LOEWNER EQUATIONS [J].
Arosio, Leandro .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) :563-570