A high-pressure hydrogen time projection chamber for the MuCap experiment

被引:3
|
作者
Egger, J. [1 ]
Fahrni, D. [1 ]
Hildebrandt, M. [1 ]
Hofer, A. [1 ]
Meier, L. [1 ]
Petitjean, C. [1 ]
Andreev, V. A. [2 ]
Banks, T. I. [3 ]
Clayton, S. M. [4 ]
Ganzha, V. A. [2 ]
Gray, F. E. [3 ,5 ,6 ]
Kammel, P. [4 ,6 ]
Kiburg, B. [4 ,6 ]
Kravtsov, P. A. [2 ]
Krivshich, A. G. [2 ]
Lauss, B. [1 ,3 ]
Maev, E. M. [2 ]
Maev, O. E. [2 ]
Petrov, G. [2 ]
Semenchuk, G. G. [2 ]
Vasilyev, A. A. [2 ]
Vorobyov, A. A. [2 ]
Vznuzdaev, M. E. [2 ]
Winter, P. [4 ,6 ]
机构
[1] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[2] Petersburg Nucl Phys Inst, Gatchina 188350, Russia
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[5] Regis Univ, Dept Phys & Computat Sci, Denver, CO 80221 USA
[6] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ELASTIC-SCATTERING; WIRE CHAMBERS; MUON-CAPTURE; PRECISION; SYSTEM; GAS; PERFORMANCE; SIMULATION; DETECTORS;
D O I
10.1140/epja/i2014-14163-1
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, mu(-) + p -> n + v(mu). The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the mu p atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Extending the dynamic range of electronics in a Time Projection Chamber
    Estee, J.
    Lynch, W. G.
    Barney, J.
    Cerizza, G.
    Jhang, G.
    Lee, J. W.
    Wang, R.
    Isobe, T.
    Kaneko, M.
    Kurata-Nishimura, M.
    Murakami, T.
    Shane, R.
    Tangwancharoen, S.
    Tsang, C. Y.
    Tsang, M. B.
    Hong, B.
    Lasko, P.
    Lukasik, J.
    McIntosh, A. B.
    Pawlowski, P.
    Pelczar, K.
    Sakurai, H.
    Santamaria, C.
    Suzuki, D.
    Yennello, S. J.
    Zhang, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 944
  • [42] Optimization of girth welded joint in a high-pressure hydrogen storage tank based on residual stress considerations
    Wang, Chong
    Huang, Shengjun
    Xu, Shugen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (33) : 16154 - 16168
  • [43] Numerical study on blast wall configurations on pressure behavior in high-pressure hydrogen tank explosions
    Myilsamy, Dinesh
    Oh, Chang Bo
    Kim, Kwang Seok
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 93 : 1071 - 1087
  • [44] A time projection chamber with GEM-based readout
    Attie, David
    Behnke, Ties
    Bellerive, Alain
    Bershyyko, Oleg
    Bhattacharya, Deb Sankar
    Bhattacharya, Purba
    Bhattacharya, Sudeb
    Caiazza, Stefano
    Colas, Paul
    De Lentdecker, Giles
    Dehmelt, Klaus
    Desch, Klaus
    Diener, Ralf
    Dixit, Madhu
    Fleck, Ivor
    Fujii, Keisuke
    Fusayasu, Takahiro
    Ganjour, Serguei
    Gao, Yuanning
    Gros, Philippe
    Hayman, Peter
    Hedberg, Vincent
    Ikematsu, Katsumasa
    Jonsson, Leif
    Kaminski, Jochen
    Kato, Yukihiro
    Kawada, Shin-ichi
    Killenberg, Martin
    Kleinwort, Claus
    Kobayashi, Makoto
    Krylov, Vladyslav
    Li, Bo
    Li, Yulan
    Lundberg, Bjorn
    Lupberger, Michael
    Majumdar, Nayana
    Matsuda, Takeshi
    Mehdiyev, Rashid
    Mjornmark, Ulf
    Mueller, Felix
    Muennich, Astrid
    Mukhopadhyay, Supratik
    Ogawa, Tomohisa
    Oskarsson, Anders
    Osterman, Lennart
    Peterson, Daniel
    Riallot, Marc
    Rosemann, Christoph
    Roth, Stefan
    Schade, Peter
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 856 : 109 - 118
  • [45] High-pressure microfluidics
    Hjort, K.
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XIII, 2015, 9320
  • [46] Effects of diaphragm rupturing conditions on self-ignition of high-pressure hydrogen
    Kaneko, Wataru
    Ishii, Kazuhiro
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (25) : 10969 - 10975
  • [47] Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network
    Silvestre, Ines
    Pastor, Ricardo
    Neto, Rui Costa
    ENERGY, 2023, 272
  • [48] High-Pressure Fine Water Mist Nozzle Retrofit Experiment and Numerical Simulation Study
    Yang, Xin-Zhi
    Du, Chen-Yang
    Liu, Yuan-Jun
    Tang, Yan
    Dong, Xi-Lin
    Huang, An-Chi
    PROCESSES, 2025, 13 (03)
  • [49] Research progress on the self-ignition of high-pressure hydrogen discharge: A review
    Zhou, Shangyong
    Luo, Zhenmin
    Wang, Tao
    He, Minyao
    Li, Ruikang
    Su, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (15) : 9460 - 9476
  • [50] High-Pressure Phase Equilibria of Tertiary-Butylamine Hydrates with and without Hydrogen
    Tanabe, Tomohiro
    Sugahara, Takeshi
    Kitamura, Kazuma
    Yamazaki, Takahiro
    Fujimoto, Takashi
    Ohgaki, Kazunari
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (02) : 222 - 227