Dipole dynamics in the point vortex model

被引:6
作者
Lydon, Karl [1 ]
Nazarenko, Sergey, V [2 ]
Laurie, Jason [1 ]
机构
[1] Aston Univ, Coll Engn & Phys Sci, Dept Math, Birmingham B4 7ET, W Midlands, England
[2] Univ Cote Azur, Inst Phys Nice, CNRS, UMR 7010, Parc Valrose, F-06108 Nice, France
基金
欧盟地平线“2020”;
关键词
vortex dynamics; point vortex model; vortex interactions; vortex clusters; CHAOTIC MOTIONS; VORTICES; SCATTERING;
D O I
10.1088/1751-8121/ac89bc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At the very heart of turbulent fluid flows are many interacting vortices that produce a chaotic and seemingly unpredictable velocity field. Gaining new insight into the complex motion of vortices and how they can lead to topological changes of flows is of fundamental importance in our strive to understand turbulence. Our aim is form an understanding of vortex interactions by investigating the dynamics of point vortex dipoles interacting with a hierarchy of vortex structures using the idealized point vortex model. Motivated by its close analogy to the dynamics of quantum vortices in Bose-Einstein condensates, we present new results on dipole size evolution, stability properties of vortex clusters, and the role of dipole-cluster interactions in turbulent mixing in 2D quantum turbulence. In particular, we discover a mechanism of rapid cluster disintegration analogous to a time-reversed self-similar vortex collapse solution.
引用
收藏
页数:30
相关论文
共 34 条
  • [11] INTEGRABLE 4 VORTEX MOTION
    ECKHARDT, B
    [J]. PHYSICS OF FLUIDS, 1988, 31 (10) : 2796 - 2801
  • [12] Onsager and the theory of hydrodynamic turbulence
    Eyink, GL
    Sreenivasan, KR
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (01) : 87 - 135
  • [13] Fjortoft R., 1953, Tellus, V5, P225
  • [14] Turbulent Superfluid Profiles in a Counterflow Channel
    Galantucci, L.
    Barenghi, C. F.
    Sciacca, M.
    Quadrio, M.
    Luchini, P.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 162 (3-4) : 354 - 360
  • [15] Goldstein H., 2002, CLASSICAL MECH
  • [16] Havelock TH, 1931, PHILOS MAG, V11, P617
  • [17] Onsager's Ensemble for Point Vortices with Random Circulations on the Sphere
    Kiessling, Michael K. -H.
    Wang, Yu
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (05) : 896 - 932
  • [18] Kirchhoff G., 1876, Vorlesungen uber mathematische Physik: Mechanik
  • [19] Self-Similar Collapse of n Point Vortices
    Kudela, Henryk
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (05) : 913 - 933
  • [20] STATISTICAL-MECHANICS OF NEGATIVE TEMPERATURE STATES
    MONTGOMERY, D
    JOYCE, G
    [J]. PHYSICS OF FLUIDS, 1974, 17 (06) : 1139 - 1145