Dipole dynamics in the point vortex model

被引:6
作者
Lydon, Karl [1 ]
Nazarenko, Sergey, V [2 ]
Laurie, Jason [1 ]
机构
[1] Aston Univ, Coll Engn & Phys Sci, Dept Math, Birmingham B4 7ET, W Midlands, England
[2] Univ Cote Azur, Inst Phys Nice, CNRS, UMR 7010, Parc Valrose, F-06108 Nice, France
基金
欧盟地平线“2020”;
关键词
vortex dynamics; point vortex model; vortex interactions; vortex clusters; CHAOTIC MOTIONS; VORTICES; SCATTERING;
D O I
10.1088/1751-8121/ac89bc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At the very heart of turbulent fluid flows are many interacting vortices that produce a chaotic and seemingly unpredictable velocity field. Gaining new insight into the complex motion of vortices and how they can lead to topological changes of flows is of fundamental importance in our strive to understand turbulence. Our aim is form an understanding of vortex interactions by investigating the dynamics of point vortex dipoles interacting with a hierarchy of vortex structures using the idealized point vortex model. Motivated by its close analogy to the dynamics of quantum vortices in Bose-Einstein condensates, we present new results on dipole size evolution, stability properties of vortex clusters, and the role of dipole-cluster interactions in turbulent mixing in 2D quantum turbulence. In particular, we discover a mechanism of rapid cluster disintegration analogous to a time-reversed self-similar vortex collapse solution.
引用
收藏
页数:30
相关论文
共 34 条
  • [1] INTEGRABLE AND CHAOTIC MOTIONS OF 4 VORTICES
    AREF, H
    POMPHREY, N
    [J]. PHYSICS LETTERS A, 1980, 78 (04) : 297 - 300
  • [2] MOTION OF 3 VORTICES
    AREF, H
    [J]. PHYSICS OF FLUIDS, 1979, 22 (03) : 393 - 400
  • [3] Aref H., 1988, Fluid Dyn. Res, V3, P63, DOI [10.1016/0169-5983(88)90044-5, DOI 10.1016/0169-5983(88)90044-5]
  • [4] Decay of homogeneous two-dimensional quantum turbulence
    Baggaley, Andrew W.
    Barenghi, Carlo F.
    [J]. PHYSICAL REVIEW A, 2018, 97 (03)
  • [5] Onsager-Kraichnan Condensation in Decaying Two-Dimensional Quantum Turbulence
    Billam, T. P.
    Reeves, M. T.
    Anderson, B. P.
    Bradley, A. S.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (14)
  • [6] Two-dimensional turbulence of dilute polymer solutions
    Boffetta, G
    Celani, A
    Musacchio, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (03)
  • [7] Kinetic theory of point vortices in two dimensions: analytical results and numerical simulations
    Chavanis, P. H.
    Lemou, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 59 (02) : 217 - 247
  • [8] Kinetic theory of point vortices: Diffusion coefficient and systematic drift
    Chavanis, PH
    [J]. PHYSICAL REVIEW E, 2001, 64 (02): : 28 - 263092
  • [9] IRREGULAR SCATTERING OF VORTEX PAIRS
    ECKHARDT, B
    [J]. EUROPHYSICS LETTERS, 1988, 5 (02): : 107 - 111
  • [10] INTEGRABLE AND CHAOTIC MOTIONS OF 4 VORTICES .2. COLLISION DYNAMICS OF VORTEX PAIRS
    ECKHARDT, B
    AREF, H
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 326 (1593): : 655 - 696