Roles of individual N-glycans for ATP potency and expression of the rat P2X1 receptor

被引:50
作者
Rettinger, J
Aschrafi, A
Schmalzing, G
机构
[1] Univ Frankfurt, Dept Pharmacol, Bioctr N 260, D-60439 Frankfurt, Germany
[2] Univ Freiburg, Dept Pharmacol & Toxicol, D-79104 Freiburg, Germany
关键词
D O I
10.1074/jbc.M002918200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P2X(1) receptor subunits assemble in the ER of Xenopus oocytes to homotrimers that appear as ATP-gated cation channels at the cell surface. Here we address the extent to which N-glycosylation contributes to assembly, surface appearance, and ligand recognition of P2X(1) receptors, SDS-polyacrylamide gel electrophoresis (PAGE) analysis of glycan minus mutants carrying Gln instead of Asn at five individual NXT/S sequons reveals that Asn(284) remains unused because of a proline in the +4 position. The four other sites (Asn(153), Asn(184), Asn(210), and Asn(300)) carry N-glycans, but solely Asn(300) located only eight residues upstream of the predicted reentry loop of P2X(1) acquires complex-type carbohydrates, Like parent P2X(1), glycan minus mutants migrate as homotrimers when resolved by blue native PAGE. Recording of ATP-gated currents reveals that elimination of Asn(153) or Asn(210) diminishes or increases functional expression levels, respectively. In addition, elimination of Asn(210) causes a 3-fold reduction of the potency for ATP, If three or all four N-glycosylation sites are simultaneously eliminated, formation of P2X(1) receptors is severely impaired or abolished, respectively. We conclude that at least one N-glycan per subunit of either position is absolutely required for the formation of P2X(1) receptors and that individual N-glycans possess marked positional effects on expression levels (Asn(154), Asn(210)) and ATP potency (Asn(210)).
引用
收藏
页码:33542 / 33547
页数:6
相关论文
共 52 条
[1]   THE ROLE OF N-GLYCOSYLATION IN THE TARGETING AND STABILITY OF GLUT1 GLUCOSE-TRANSPORTER [J].
ASANO, T ;
TAKATA, K ;
KATAGIRI, H ;
ISHIHARA, H ;
INUKAI, K ;
ANAI, M ;
HIRANO, H ;
YAZAKI, Y ;
OKA, Y .
FEBS LETTERS, 1993, 324 (03) :258-261
[3]   A P2X PURINOCEPTOR CDNA CONFERRING A NOVEL PHARMACOLOGICAL PROFILE [J].
BO, XN ;
ZHANG, Y ;
NASSAR, M ;
BURNSTOCK, G ;
SCHOEPFER, R .
FEBS LETTERS, 1995, 375 (1-2) :129-133
[4]   NEW STRUCTURAL MOTIF FOR LIGAND-GATED ION CHANNELS DEFINED BY AN IONOTROPIC ATP RECEPTOR [J].
BRAKE, AJ ;
WAGENBACH, MJ ;
JULIUS, D .
NATURE, 1994, 371 (6497) :519-523
[5]   An antagonist-insensitive P-2X receptor expressed in epithelia and brain [J].
Buell, G ;
Lewis, C ;
Collo, G ;
North, RA ;
Surprenant, A .
EMBO JOURNAL, 1996, 15 (01) :55-62
[6]  
Burnstock G, 1999, PROG BRAIN RES, V120, P3
[7]   A P2X PURINOCEPTOR EXPRESSED BY A SUBSET OF SENSORY NEURONS [J].
CHEN, CC ;
AKOPIAN, AN ;
SIVILOTTI, L ;
COLQUHOUN, D ;
BURNSTOCK, G ;
WOOD, JN .
NATURE, 1995, 377 (6548) :428-431
[8]  
Collo G, 1996, J NEUROSCI, V16, P2495
[9]   Single channel properties of P2X2 purinoceptors [J].
Ding, SH ;
Sachs, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 113 (05) :695-719
[10]   Inactivation of P2X2 purinoceptors by divalent cations [J].
Ding, SH ;
Sachs, F .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 522 (02) :199-214