Gradient Design for High-Energy and High-Power Batteries

被引:90
作者
Wu, Jingyi [1 ,2 ,3 ]
Ju, Zhengyu [2 ,3 ]
Zhang, Xiao [2 ,3 ]
Marschilok, Amy C. [4 ,5 ,6 ]
Takeuchi, Kenneth J. [4 ,5 ,6 ]
Wang, Huanlei [1 ]
Takeuchi, Esther S. [4 ,5 ,6 ]
Yu, Guihua [2 ,3 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Shandong, Peoples R China
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
[4] SUNY Stony Brook, Dept Chem, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[5] Brookhaven Natl Lab, Energy & Photon Sci Directorate, Interdisciplinary Sci Dept, Upton, NY 11973 USA
[6] SUNY Stony Brook, Inst Electrochemically Stored Energy, Stony Brook, NY 11794 USA
关键词
batteries; charge transport; charge-transport; electrochemical kinetics; energy storage; gradient design strategies; LI-ION BATTERY; LITHIUM-METAL; POROSITY DISTRIBUTION; TRANSPORT KINETICS; GRADED ELECTRODES; THICK ELECTRODES; ELECTROLYTES; PERFORMANCE; TORTUOSITY; OPPORTUNITIES;
D O I
10.1002/adma.202202780
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Charge transport is a key process that dominates battery performance, and the microstructures of the cathode, anode, and electrolyte play a central role in guiding ion and/or electron transport inside the battery. Rational design of key battery components with varying microstructure along the charge-transport direction to realize optimal local charge-transport dynamics can compensate for reaction polarization, which accelerates electrochemical reaction kinetics. Here, the principles of charge-transport mechanisms and their decisive role in battery performance are presented, followed by a discussion of the correlation between charge-transport regulation and battery microstructure design. The design strategies of the gradient cathodes, lithium-metal anodes, and solid-state electrolytes are summarized. Future directions and perspectives of gradient design are provided at the end to enable practically accessible high-energy and high-power-density batteries.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Design of phosphorus-doped porous hard carbon/Si anode with enhanced Li-ion kinetics for high-energy and high-power Li-ion batteries [J].
Yi, Si ;
Yan, Zhilin ;
Li, Xingda ;
Wang, Zhen ;
Ning, Pengpeng ;
Zhang, Jingwen ;
Huang, Jinlan ;
Yang, Deren ;
Du, Ning .
CHEMICAL ENGINEERING JOURNAL, 2023, 473
[22]   Evolution of Safety Behavior of High-Power and High-Energy Commercial Li-Ion Cells after Electric Vehicle Aging [J].
Kuntz, Pierre ;
Lonardoni, Loic ;
Genies, Sylvie ;
Raccurt, Olivier ;
Azais, Philippe .
BATTERIES-BASEL, 2023, 9 (08)
[23]   A Lasagna-Inspired Nanoscale ZnO Anode Design for High-Energy Rechargeable Aqueous Batteries [J].
Yan, Yu ;
Zhang, Yamin ;
Wu, Yutong ;
Wang, Zhongzhen ;
Mathur, Anmol ;
Yang, Haochen ;
Chen, Peng ;
Nair, Sankar ;
Liu, Nian .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (11) :6345-6351
[24]   Simple and sensitive technique for alignment of the pinhole of a spatial filter of a high-energy, high-power laser system [J].
Sharma, Avnish Kumar ;
Patidar, Rajesh Kumar ;
Daiya, Deepak ;
Joshi, Anandverdhan ;
Naik, Prasad Anant ;
Gupta, Parshotam Dass .
APPLIED OPTICS, 2013, 52 (12) :2546-2554
[25]   Domino Reactions Enabling Sulfur-Mediated Gradient Interphases for High-Energy Lithium Batteries [J].
Tian, Mengyu ;
Jin, Zhou ;
Song, Ziyu ;
Qiao, Ronghan ;
Yan, Yong ;
Yu, Hailong ;
Ben, Liubin ;
Armand, Michel ;
Zhang, Heng ;
Zhou, Zhi-bin ;
Huang, Xuejie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (39) :21600-21611
[26]   Highly porous carbon nanotube air-electrode combined with low-viscosity amide-based electrolyte enabling high-power, high-energy lithium-air batteries [J].
Nomura, Akihiro ;
Azuma, Shota ;
Ozawa, Fumisato ;
Saito, Morihiro .
JOURNAL OF POWER SOURCES, 2025, 633
[27]   Petroleum Coke as an Efficient Single Carbon Source for High-Energy and High-Power Lithium-Ion Capacitors [J].
Veluri, Pavan S. ;
Katchala, Nanaji ;
Anandan, S. ;
Pramanik, M. ;
NarayanSrinivasan, Krishnamurthy ;
Ravi, B. ;
Rao, Tata N. .
ENERGY & FUELS, 2021, 35 (10) :9010-9016
[28]   Polysiloxane-Based Single-Ion Conducting Polymer Blend Electrolyte Comprising Small-Molecule Organic Carbonates for High-Energy and High-Power Lithium-Metal Batteries [J].
Liang, Hai-Peng ;
Zarrabeitia, Maider ;
Chen, Zhen ;
Jovanovic, Sven ;
Merz, Steffen ;
Granwehr, Josef ;
Passerini, Stefano ;
Bresser, Dominic .
ADVANCED ENERGY MATERIALS, 2022, 12 (16)
[29]   Progress of high-power lithium-ion batteries [J].
Chen G.-X. ;
Sun X.-Z. ;
Zhang X. ;
Wang K. ;
Ma Y.-W. .
Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04) :612-624
[30]   Overcoming the obstacles of lithium-metal anodes for high-energy batteries [J].
Qu, Jiale ;
Liu, Junjie ;
Leng, Guorui ;
Wang, Yunqing ;
Wang, Shanshan ;
Shen, Shuang ;
Yin, Haoyu ;
Hou, Zhenghao ;
Duan, Baorong .
ELECTROCHEMISTRY COMMUNICATIONS, 2023, 153