The Combinatorics of Real Double Hurwitz Numbers with Real Positive Branch Points

被引:5
作者
Guay-Paquet, Mathieu [1 ]
Markwig, Hannah [2 ]
Rau, Johannes [2 ]
机构
[1] Univ Quebec, LaCIM, 201 Av President Kennedy, Montreal, PQ H2X 3Y7, Canada
[2] Univ Saarland, Fachbereich Math, Postfach 151150, D-66041 Saarbrucken, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
WALL CROSSINGS; GEOMETRY;
D O I
10.1093/imrn/rnv135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the combinatorics of real double Hurwitz numbers with real positive branch points using the symmetric group. Our main focus is 2-fold. First, we prove correspondence theorems relating these numbers to counts of tropical real covers and study the structure of real double Hurwitz numbers with the help of the tropical count. Second, we express the numbers as counts of paths in a subgraph of the Cayley graph of the symmetric group. By restricting to real double Hurwitz numbers with real positive branch points, we obtain a concise translation of the counting problem in terms of tuples of elements of the symmetric group that enables us to uncover the beautiful combinatorics of these numbers both in tropical geometry and in the Cayley graph.
引用
收藏
页码:258 / 293
页数:36
相关论文
共 9 条
[1]   Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles [J].
Bertram, Aaron ;
Cavalieri, Renzo ;
Markwig, Hannah .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) :1604-1631
[2]   Counting real Galois covers of the projective line [J].
Cadoret, A .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 219 (01) :53-81
[3]   Wall crossings for double Hurwitz numbers [J].
Cavalieri, Renzo ;
Johnson, Paul ;
Markwig, Hannah .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :1894-1937
[4]   Tropical Hurwitz numbers [J].
Cavalieri, Renzo ;
Johnson, Paul ;
Markwig, Hannah .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) :241-265
[5]  
Goulden I. P., 2004, COMBINATORIAL ENUMER
[6]   Towards the geometry of double Hurwitz numbers [J].
Goulden, IP ;
Jackson, DM ;
Vakil, R .
ADVANCES IN MATHEMATICS, 2005, 198 (01) :43-92
[7]  
Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi
[8]  
Johnson P., 2010, ARXIV10083266
[9]   Chamber behavior of double Hurwitz numbers in genus 0 [J].
Shadrin, S. ;
Shapiro, M. ;
Vainshtein, A. .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :79-96