Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries

被引:119
|
作者
Jiang, Yunling [1 ]
Zou, Guoqiang [1 ]
Hou, Hongshuai [1 ]
Li, Jiayang [1 ]
Liu, Cheng [1 ]
Qiu, Xiaoqing [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
bimetallic organic frameworks; transition metal diselenides; ion doping; voltage windows; sodium-ion batteries; PERFORMANCE ANODE MATERIAL; METAL-ORGANIC FRAMEWORKS; HIGH-CAPACITY; LITHIUM-ION; EFFICIENT ELECTROCATALYST; CARBON NANOTUBES; CATHODE MATERIAL; STORAGE; EVOLUTION; COSE2;
D O I
10.1021/acsnano.9b05614
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition-metal selenides have captured sustainable research attention in energy storage and conversion field as promising anodes for sodium-ion batteries. However, for the majority of transition metal selenides, the potential windows have to compress to 0.5-3.0 V for the maintenance of cycling and rate capability, which largely sacrifices the capacity under low voltage and impair energy density for sodium full batteries. Herein, through introducing diverse metal ions, transition-metal selenides consisted of different composition doping (CoM-Se-2@NC, M = Ni, Cu, Zn) are prepared with more stable structures and higher conductivity, which exhibit superior cycling and rate properties than those of CoSe2@NC even at a wider voltage range for sodium ion batteries. In particular, Zn2+ doping demonstrates the most prominent sodium storage performance among series materials, delivering a high capacity of 474 mAh g(-1) after 80 cycles at 500 mA g(-1) and rate capacities of 511.4, 382.7, 372.1, 339.2, 306.8, and 291.4 mAh g(-1) at current densities of 0.1, 0.5, 1.0, 1.4, 1.8, and 2.0 A g(-1), respectively. The composition adjusting strategy based on metal ions doping can optimize electrochemical performances of metal selenides, offer an avenue to expand stable voltage windows, and provide a feasible approach for the construction of high specific energy sodium-ion batteries.
引用
收藏
页码:10787 / 10797
页数:11
相关论文
共 50 条
  • [1] Engineering of Sodium-Ion Batteries: Opportunities and Challenges
    Zhao, Lina
    Zhang, Teng
    Li, Wei
    Li, Tao
    Zhang, Long
    Zhang, Xiaoguang
    Wang, Zhiyi
    ENGINEERING, 2023, 24 : 172 - 183
  • [2] Electrode Engineering by Atomic Layer Deposition for Sodium-Ion Batteries: From Traditional to Advanced Batteries
    Yu, Fan
    Du, Lei
    Zhang, Gaixia
    Su, Fengmei
    Wang, Weichao
    Sun, Shuhui
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (09)
  • [3] Advanced Anode Materials for Rechargeable Sodium-Ion Batteries
    Qiao, Shuangyan
    Zhou, Qianwen
    Ma, Meng
    Liu, Hua Kun
    Dou, Shi Xue
    Chong, Shaokun
    ACS NANO, 2023, 17 (12) : 11220 - 11252
  • [4] Structural engineering of Sb-based electrode materials to enhance advanced sodium-ion batteries
    Yang, Zheng
    Kang, Qiao-Ling
    Yan, Li-Jing
    Meng, Xian-He
    Ma, Ting-Li
    RARE METALS, 2024, 43 (10) : 4777 - 4806
  • [5] Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries
    Zhao, Qing
    Lu, Yong
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2017, 7 (08)
  • [6] Binder-Free Electrodes for Advanced Sodium-Ion Batteries
    Jin, Ting
    Han, Qingqing
    Jiao, Lifang
    ADVANCED MATERIALS, 2020, 32 (03)
  • [7] Interphases in Sodium-Ion Batteries
    Song, Junhua
    Xiao, Biwei
    Lin, Yuehe
    Xu, Kang
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [8] Engineering of carbon anodes by laser irradiation for advanced sodium-ion batteries
    Alhajji, Eman M.
    Yin, Jian
    Jin, Junjie
    Hedhili, Mohammed N.
    Schwingenschlogl, Udo
    Alshareef, Husam N.
    MATERIALS TODAY ENERGY, 2023, 38
  • [9] Interfacial Engineering of Metal Chalcogenides-based Heterostructures for Advanced Sodium-Ion Batteries
    Zhang, Yuxiang
    Han, Bo
    Tan, Shuangshuang
    Gao, Qiang
    Cai, Zhao
    Zhou, Chenggang
    Li, Jiantao
    Sun, Ruimin
    Amine, Khalil
    ADVANCED ENERGY MATERIALS, 2024,
  • [10] Graphitic Carbon Materials for Advanced Sodium-Ion Batteries
    Xu, Zheng-Long
    Park, Jooha
    Yoon, Cabin
    Kim, Haegyeom
    Kang, Kisuk
    SMALL METHODS, 2019, 3 (04)