Replica exchange molecular dynamics simulations of amyloid peptide aggregation

被引:180
作者
Cecchini, M [1 ]
Rao, F [1 ]
Seeber, M [1 ]
Caflisch, A [1 ]
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
关键词
D O I
10.1063/1.1809588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the beta-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides. (C) 2004 American Institute of Physics.
引用
收藏
页码:10748 / 10756
页数:9
相关论文
共 69 条
[1]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid [J].
Balbirnie, M ;
Grothe, R ;
Eisenberg, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2375-2380
[3]   Can nematic transitions be predicted by atomistic simulations? A computational study of the odd even effect [J].
Berardi, R ;
Muccioli, L ;
Zannoni, C .
CHEMPHYSCHEM, 2004, 5 (01) :104-111
[4]   Novel methods of sampling phase space in the simulation of biological systems [J].
Berne, BJ ;
Straub, JE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (02) :181-189
[5]   Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix [J].
Blake, C ;
Serpell, L .
STRUCTURE, 1996, 4 (08) :989-998
[6]   Effect of secondary structure on protein aggregation: A replica exchange simulation study [J].
Bratko, D ;
Blanch, HW .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (11) :5185-5194
[7]   Folding and aggregation of designed proteins [J].
Broglia, RA ;
Tiana, G ;
Pasquali, S ;
Roman, HE ;
Vigezzi, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12930-12933
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[10]  
CECCHINI, UNPUB