Defect Dynamics in 2-D MoS2 Probed by Using Machine Learning, Atomistic Simulations, and High-Resolution Microscopy

被引:86
作者
Patra, Tarak K. [1 ]
Zhang, Fu [4 ,5 ]
Schulman, Daniel S. [4 ]
Chan, Henry [1 ]
Cherukara, Mathew J. [1 ,3 ]
Terrones, Mauricio [4 ,5 ,6 ,7 ]
Das, Saptarshi [5 ,8 ]
Narayanan, Badri [2 ,10 ]
Sankaranarayanan, Subramanian K. R. S. [1 ,9 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
[5] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[6] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[7] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[8] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[9] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[10] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
基金
美国国家科学基金会;
关键词
machine learning; microscopy; atomistic simulations; 2D materials; phase transitions; and defect dynamics; 2-DIMENSIONAL MATERIALS; TRANSITION; RESISTANCE; SURFACE; 2H; 1T; TRANSFORMATION; NANOSHEETS; CORROSION; FIELD;
D O I
10.1021/acsnano.8b02844
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structural defects govern various physical, chemical, and optoelectronic properties of two-dimensional transition-metal dichalcogenides (TMDs). A fundamental understanding of the spatial distribution and dynamics of defects in these low-dimensional systems is critical for advances in nanotechnology. However, such understanding has remained elusive primarily due to the inaccessibility of (a) necessary time scales via standard atomistic simulations and (b) required spatiotemporal resolution in experiments. Here, we take advantage of supervised machine learning, in situ high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations to overcome these limitations. We combine genetic algorithms (GA) with MD to investigate the extended structure of point defects, their dynamical evolution, and their role in inducing the phase transition between the semiconducting (2H) and metallic (1T) phase in monolayer MoS2. GA-based structural optimization is used to identify the long-range structure of randomly distributed point defects (sulfur vacancies) densities. Regardless of the density, we find that organization of sulfur vacancies into extended lines is the most energetically favorable. HRTEM validates these findings and suggests a phase transformation from the 2H-to-1T phase that is localized near these extended defects when exposed to high electron beam doses. MD simulations elucidate the molecular mechanism driving the onset of the 2H to IT transformation and indicate that finite amounts of 1T phase can be retained by increasing the defect concentration and temperature. This work significantly advances the current understanding of defect structure/evolution and structural transitions in 2D TMDs, which is crucial for designing nanoscale devices with desired functionality.
引用
收藏
页码:8006 / 8016
页数:11
相关论文
共 70 条
[1]   Surface Defects on Natural MoS2 [J].
Addou, Rafik ;
Colombo, Luigi ;
Wallace, Robert M. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (22) :11921-11929
[2]   The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene [J].
Algara-Siller, Gerardo ;
Kurasch, Simon ;
Sedighi, Mona ;
Lehtinen, Ossi ;
Kaiser, Ute .
APPLIED PHYSICS LETTERS, 2013, 103 (20)
[3]   Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors [J].
Arnold, Andrew J. ;
Razavieh, Ali ;
Nasr, Joseph R. ;
Schulman, Daniel S. ;
Eichfeld, Chad M. ;
Das, Saptarshi .
ACS NANO, 2017, 11 (03) :3110-3118
[4]   A lithium-oxygen battery with a long cycle life in an air-like atmosphere [J].
Asadi, Mohammad ;
Sayahpour, Baharak ;
Abbasi, Pedram ;
Ngo, Anh T. ;
Karis, Klas ;
Jokisaari, Jacob R. ;
Liu, Cong ;
Narayanan, Badri ;
Gerard, Marc ;
Yasaei, Poya ;
Hu, Xuan ;
Mukherjee, Arijita ;
Lau, Kah Chun ;
Assary, Rajeev S. ;
Khalili-Araghi, Fatemeh ;
Klie, Robert F. ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
NATURE, 2018, 555 (7697) :502-+
[5]   Optically Directed Assembly of Continuous Mesoscale Filaments [J].
Bahns, J. T. ;
Sankaranarayanan, S. K. R. S. ;
Gray, S. K. ;
Chen, L. .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)
[6]   Optically Directed Mesoscale Assembly and Patterning of Electrically Conductive Organic-Inorganic Hybrid Structures [J].
Bahns, John T. ;
Sankaranarayanan, Subramanian K. R. S. ;
Giebink, Noel C. ;
Xiong, Hui ;
Gray, Stephen K. .
ADVANCED MATERIALS, 2012, 24 (35) :OP242-OP246
[7]   Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts [J].
Bampoulis, Pantelis ;
van Bremen, Rik ;
Yao, Qirong ;
Poelsema, Bene ;
Zandvliet, Harold J. W. ;
Sotthewes, Kai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :19278-19286
[8]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[9]   Machine Learning Force Fields: Construction, Validation, and Outlook [J].
Botu, V. ;
Batra, R. ;
Chapman, J. ;
Ramprasad, R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :511-522
[10]   Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials [J].
Cancado, Luiz Gustavo ;
da Silva, Mateus Gomes ;
Martins Ferreira, Erlon H. ;
Hof, Ferdinand ;
Kampioti, Katerina ;
Huang, Kai ;
Penicaud, Alain ;
Achete, Carlos Alberto ;
Capaz, Rodrigo B. ;
Jorio, Ado .
2D MATERIALS, 2017, 4 (02)