The BV-capacity in metric spaces

被引:48
作者
Hakkarainen, Heikki [2 ]
Kinnunen, Juha [1 ]
机构
[1] Aalto Univ, Dept Math, Helsinki 02015, Finland
[2] Univ Oulu, Dept Math Sci, Oulu 90014, Finland
关键词
SOBOLEV FUNCTIONS; FINITE PERIMETER; LEBESGUE POINTS; FINE PROPERTIES; INEQUALITY; SETS;
D O I
10.1007/s00229-010-0337-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study basic properties of the BV-capacity and Sobolev capacity of order one in a complete metric space equipped with a doubling measure and supporting a weak Poincare inequality. In particular, we show that the BV-capacity is a Choquet capacity and the Sobolev 1-capacity is not. However, these quantities are equivalent by two sided estimates and they have the same null sets as the Hausdorff measure of codimension one. The theory of functions of bounded variation plays an essential role in our arguments. The main tool is a modified version of the boxing inequality.
引用
收藏
页码:51 / 73
页数:23
相关论文
共 26 条
[21]  
Kinnunen J, 2000, P AN GEOM NOV AK, P285
[22]   Lebesgue points and capacities via the boxing inequality in metric spaces [J].
Kinnunen, Juha ;
Korte, Riikka ;
Shanmugalingam, Nageswari ;
Tuominen, Heli .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :401-430
[23]  
Kinnunen Juha, 2003, Results Math., V44, P114
[24]  
Mäkäläinen T, 2009, REV MAT IBEROAM, V25, P533
[25]   Functions of bounded variation on "good" metric spaces [J].
Miranda, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08) :975-1004
[26]  
Shanmugalingam N, 2000, REV MAT IBEROAM, V16, P243