Higher order Calderon-Zygmund estimates for the p-Laplace equation

被引:42
作者
Balci, Anna Kh [1 ]
Diening, Lars [1 ]
Weimar, Markus [2 ]
机构
[1] Univ Bielefeld, Univ Str 25, D-33615 Bielefeld, Germany
[2] Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany
基金
俄罗斯基础研究基金会;
关键词
p-Laplacian; Nonlinear elliptic equations; Regularity of solutions; ELLIPTIC-SYSTEMS; REGULARITY; CONVERGENCE;
D O I
10.1016/j.jde.2019.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with higher order Calderon-Zygmund estimates for the p-Laplace equation -div(A(del(u))) := - div (vertical bar del(u)vertical bar(p-2)del u) = -div F. 1 < p < infinity We are able to transfer local interior Besov and Triebel-Lizorkin regularity up to first order derivatives from the force term F to the flux A(del u). For p >= 2 we show that F is an element of B-Q,q(s) implies A(del u) is an element of B-Q,q(s) for any s is an element of (0, 1) and all reasonable Q, q is an element of (0, infinity] in the planar case. The result fails for p < 2. In case of higher dimensions and systems we have a smallness restriction on s. The quasi-Banach case 0 < min{Q, q} < 1 is included, since it has important applications in the adaptive finite element analysis. As an intermediate step we prove new linear decay estimates for p-harmonic functions in the plane for the full range 1 < p < infinity. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:590 / 635
页数:46
相关论文
共 30 条
[1]   A proof of the Cp′-regularity conjecture in the plane [J].
Araujo, Damido J. ;
Teixeira, Eduardo V. ;
Urbano, Jose Miguel .
ADVANCES IN MATHEMATICS, 2017, 316 :541-553
[2]   ON CERTAIN P-HARMONIC FUNCTIONS IN THE PLANE [J].
ARONSSON, G .
MANUSCRIPTA MATHEMATICA, 1988, 61 (01) :79-101
[3]   Nonlinear Caldern-Zygmund Theory in the Limiting Case [J].
Avelin, Benny ;
Kuusi, Tuomo ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 227 (02) :663-714
[4]  
Baernstein A, 2005, ANN SCUOLA NORM-SCI, V4, P295
[5]   The p-Laplace system with right-hand side in divergence form: Inner and up to the boundary pointwise estimates [J].
Breit, D. ;
Cianchi, A. ;
Diening, L. ;
Kuusi, T. ;
Schwarzacher, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 :200-212
[6]   Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system [J].
Breit, Dominic ;
Cianchi, Andrea ;
Diening, Lars ;
Kuusi, Tuomo ;
Schwarzacher, Sebastian .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 114 :146-190
[7]   Second-Order Two-Sided Estimates in Nonlinear Elliptic Problems [J].
Cianchi, Andrea ;
Maz'ya, Vladimir G. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :569-599
[8]   Besov regularity for solutions of p-harmonic equations [J].
Clop, Albert ;
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :762-778
[9]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
[10]   Besov regularity of solutions to the p-Poisson equation [J].
Dahlke, Stephan ;
Diening, Lars ;
Hartmann, Christoph ;
Scharf, Benjamin ;
Weimar, Markus .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 :298-329