Effect of proton intercalation on photo-activity of WO3 anodes for water splitting

被引:12
作者
Calero, Sonia J. [1 ]
Ortiz, Pablo [1 ]
Onate, Andres F. [1 ]
Cortes, Maria T. [2 ]
机构
[1] Univ Los Andes, Dept Chem Engn, Carrera 1 Este 19A-40,Edificio Mario Laserna, Bogota, Colombia
[2] Univ Los Andes, Dept Chem, Carrera 1 18A-12,Bloque Q, Bogota, Colombia
关键词
Proton intercalation; Tungsten oxide; Water splitting; Morphology; Photoactivity; TUNGSTEN-OXIDE; THIN-FILMS; PHOTOELECTROCHEMICAL PERFORMANCE; ELECTROCHROMIC PROPERTIES; PHOTOANODES; ARRAYS;
D O I
10.1016/j.ijhydene.2015.12.155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous and nanostructured WO3 semiconductor thin films have been used as electrodes for water photo-electrolysis. As water-splitting cells frequently operate in acidic conditions, the aim of this work is to evaluate the effect of proton intercalation of WO3 electrodes on the performance of the photo-electrolysis process. For this, a first study of proton charge and proton discharge electrode's capacity was performed under cathodic and anodic polarization, respectively, at different voltages and times. Protonated electrodes were then exposed to simulated solar radiation in a photo-electrochemical cell (PEC) and characterized with both chronoamperometry and linear sweep voltammetry. The results indicated that proton intercalation reduces WO3 photo-activity; however, the effect is reversible and after enough time full proton discharge is achieved and photoresponse is recovered. The work points out the influence of the WO3 film microstructure on the discharge kinetics and proposes proton intercalation/deintercalation studies as a characterization technique of photoelectrodes. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4922 / 4930
页数:9
相关论文
共 43 条
[31]   Remediation of 2,4-dichlorophenol contaminated water by visible light-enhanced WO3 photoelectrocatalysis [J].
Scott-Emuakpor, E. O. ;
Kruth, A. ;
Todd, M. J. ;
Raab, A. ;
Paton, G. I. ;
Macphee, D. E. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 123 :433-439
[32]   A tree-like nanoporous WO3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation [J].
Shin, Sun ;
Han, Hyun Soo ;
Kim, Ju Seong ;
Park, Ik Jae ;
Lee, Myeong Hwan ;
Hong, Kug Sun ;
Cho, In Sun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (24) :12920-12926
[33]   Critical aspects in the production of periodically ordered mesoporous titania thin films [J].
Soler-Illia, Galo J. A. A. ;
Angelome, Paula C. ;
Cecilia Fuertes, M. ;
Grosso, David ;
Boissiere, Cedric .
NANOSCALE, 2012, 4 (08) :2549-2566
[34]   Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films [J].
Subrahmanyam, A. ;
Karuppasamy, A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (04) :266-274
[35]  
Vayssieres L., 2010, On Solar Hydrogen and Nanotechnology
[36]  
White H S, 2001, ELECTROCHEMICAL METH
[37]   A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array [J].
Xu, Fang ;
Yao, Yanwen ;
Bai, Dandan ;
Xu, Ruishu ;
Mei, Jingjing ;
Wu, Dapeng ;
Gao, Zhiyong ;
Jiang, Kai .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 458 :194-199
[38]   In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties [J].
Zhan, Faqi ;
Li, Jie ;
Li, Wenzhang ;
Liu, Yisi ;
Xie, Renrui ;
Yang, Yahui ;
Li, Yaomin ;
Chen, Qiyuan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (20) :6512-6520
[39]   Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study [J].
Zhang, Teng ;
Zhu, Zonglong ;
Chen, Haining ;
Bai, Yang ;
Xiao, Shuang ;
Zheng, Xiaoli ;
Xue, Qingzhong ;
Yang, Shihe .
NANOSCALE, 2015, 7 (07) :2933-2940
[40]   Preparation and structure dependence of H2 sensing properties of palladium-coated tungsten oxide films [J].
Zhao, Meng ;
Huang, Jianxing ;
Ong, Chung-Wo .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 177 :1062-1070