Minocycline relieves myocardial ischemia-reperfusion injury in rats by inhibiting inflammation, oxidative stress and apoptosis

被引:7
|
作者
Chen, L-Q [1 ]
Wang, W-S [1 ]
Li, S-Q [1 ]
Liu, J-H [1 ]
机构
[1] Hunan Univ Chinese Med, Dept Cardiol, Hosp 1, Changsha, Peoples R China
关键词
Minocycline; Myocardial ischemia-reperfusion injury Inflammation; Oxidative stress; Apoptosis; ISCHEMIA/REPERFUSION;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: Myocardial ischemia-reperfusion (VR) injury (MIRI) is an important cause of irreversible injury to the myocardium in patients with acute myocardial infarction. The purpose of this study was to investigate the effects of minocycline (MC) on inflammation, oxidative stress and apoptosis of myocardial tissues. MATERIALS AND METHODS: We used rats to establish MIRI model by ligating coronary arteries. The structure and function of rat myocardium were determined by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining and echocardiography. In addition, we detected the expression of inflammatory factors, antioxidant enzymes and apoptosis-related molecules in rats by enzyme-linked immunosorbent assay (ELISA), immunohistochemical (IHC) staining and reverse transcription-polymerase chain reaction (RTPCR) to determine the effect of MC on inflammation, oxidative stress and apoptosis in VR rats. Finally, we studied the effect of MC stimulation on the viability of rat cardiomyocytes (H9c2 cells) in vitro. RESULTS: After VR. the heart function of rats decreased. and the structure of myocardium was destroyed. The levels of inflammation and oxidative stress in VR rats also increased significantly, manifested by increased inflammatory factors and decreased antioxidant enzymes in serum and myocardial tissue. After treatment of VR rats with MC, the structure and function of rat myocardium improved significantly, and MC reduced inflammation and oxidative stress levels in rats. thus inhibiting the apoptosis of cardiomyocytes. MC also improved the viability of H9c2 cells in vitro. CONCLUSIONS: MC reduced inflammation and oxidative stress levels in MIRI rat model or H9c2 cells. thus inhibiting cardiomyocyte apoptosis. Therefore. MC has potential application prospects for the treatment of MIRI.
引用
收藏
页码:3001 / 3009
页数:9
相关论文
共 50 条
  • [41] Myocardial ischemia-reperfusion injury and the influence of inflammation 
    Algoet, Michiel
    Janssens, Stefan
    Himmelreich, Uwe
    Gsell, Willy
    Pusovnik, Matic
    van den Eynde, Jef
    Oosterlinck, Wouter
    TRENDS IN CARDIOVASCULAR MEDICINE, 2023, 33 (06) : 357 - 366
  • [42] Sinomenine Confers Protection Against Myocardial Ischemia Reperfusion Injury by Preventing Oxidative Stress, Cellular Apoptosis, and Inflammation
    Xia, Boyu
    Li, Qi
    Wu, Jingjing
    Yuan, Xiaomei
    Wang, Fei
    Lu, Xu
    Huang, Chao
    Zheng, Koulong
    Yang, Rongrong
    Yin, Le
    Liu, Kun
    You, Qingsheng
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [43] Cocoa Flavonoids Reduce Inflammation and Oxidative Stress in a Myocardial Ischemia-Reperfusion Experimental Model
    Ahmed, Sajeela
    Ahmed, Naseer
    Rungatscher, Alessio
    Linardi, Daniele
    Kulsoom, Bibi
    Innamorati, Giulio
    Meo, Sultan Ayoub
    Gebrie, Mebratu Alebachew
    Mani, Romel
    Merigo, Flavia
    Guzzo, Flavia
    Faggian, Giuseppe
    ANTIOXIDANTS, 2020, 9 (02)
  • [44] Effect of minocycline on cerebral ischemia-reperfusion injury
    Zheng, Yuanyin
    Xu, Lijuan
    Yin, Jinbao
    Zhong, Zhichao
    Fan, Hongling
    Li, Xi
    Chang, Quanzhong
    NEURAL REGENERATION RESEARCH, 2013, 8 (10) : 900 - 908
  • [45] Cardioprotective effects of anisodamine against myocardial ischemia/reperfusion injury through the inhibition of oxidative stress, inflammation and apoptosis
    Yao, Bao-Ju
    He, Xiao-Qing
    Lin, Yu-Hui
    Dai, Wen-Jun
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 1253 - 1260
  • [46] Effect of minocycline on cerebral ischemia-reperfusion injury
    Yuanyin Zheng
    Lijuan Xu
    Jinbao Yin
    Zhichao Zhong
    Hongling Fan
    Xi Li
    Quanzhong Chang
    Neural Regeneration Research, 2013, 8 (10) : 900 - 908
  • [47] Mitigating Remote Organ-Induced Brain Injury in Renal Ischemia-Reperfusion: The Role of Oleuropein in Inhibiting Oxidative Stress, Inflammation, Ferroptosis, and Apoptosis in Male Rats
    Ghaffarinasab, Mohammad
    Kaeidi, Ayat
    Hassanshahi, Jalal
    JOURNAL OF NEUROIMMUNE PHARMACOLOGY, 2025, 20 (01)
  • [48] Chlorogenic Acid Alleviates Hepatic Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress, Inflammation, and Mitochondria-Mediated Apoptosis In Vivo and In Vitro
    Li, Kai
    Feng, Zanjie
    Wang, Liusong
    Ma, Xuan
    Wang, Lei
    Liu, Kangwei
    Geng, Xin
    Peng, Cijun
    INFLAMMATION, 2023, 46 (03) : 1061 - 1076
  • [49] Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury
    Abcouwer, Steven F.
    Lin, Cheng-mao
    Shanmugam, Sumathi
    Muthusamy, Arivalagan
    Barber, Alistair J.
    Antonetti, David A.
    JOURNAL OF NEUROINFLAMMATION, 2013, 10
  • [50] Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury
    Steven F Abcouwer
    Cheng-mao Lin
    Sumathi Shanmugam
    Arivalagan Muthusamy
    Alistair J Barber
    David A Antonetti
    Journal of Neuroinflammation, 10