Hybrid Projective Synchronization of a New Hyperchaotic System

被引:0
作者
Yu, Jinchen [1 ,2 ]
Zhang, Caiyan [3 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing, Peoples R China
[2] Shandong Jiaotong Univ, Sch Sci, Jinan, Shandong, Peoples R China
[3] Shandong Coll Elect Technol, Dept Math, Jinan, Shandong, Peoples R China
来源
PROCEEDINGS OF 2013 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT AUTOMATION | 2013年 / 254卷
关键词
Chaos; Synchronization; Lyapunov theory; CHAOTIC SYSTEMS; GENERALIZED SYNCHRONIZATION;
D O I
10.1007/978-3-642-38524-7_42
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hybrid projective synchronization (HPS) of a new hyperchaotic system is studied using a nonlinear feedback control. The nonlinear controller is designed according to Lyapunov's direct method to guarantee HPS, which includes synchronization, anti-synchronization and projective synchronization. Numerical examples are presented in order to verify the effectiveness of the proposed scheme.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 14 条
[1]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[2]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[3]   Global anti-synchronization of master-slave chaotic modified Chua's circuits coupled by linear feedback control [J].
Chen, Yun ;
Li, Minyong ;
Cheng, Zhifeng .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) :567-573
[4]   Phase synchronization with harmonic wavelet transform with application to neuronal populations [J].
Li, Duan ;
Li, Xiaoli ;
Cui, Dong ;
Li, ZhaoHui .
NEUROCOMPUTING, 2011, 74 (17) :3389-3403
[5]   Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters [J].
Liu, Shutang ;
Liu, Ping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3046-3055
[6]   Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system [J].
Ma, Jun ;
Li, Fan ;
Huang, Long ;
Jin, Wu-Yin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3770-3785
[7]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[8]   A new hyperchaotic system from the Lu system and its control [J].
Pang, Shouquan ;
Liu, Yongjian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) :2775-2789
[9]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[10]   Phase and anti-phase synchronization of fractional order chaotic systems via active control [J].
Taghvafard, Hadi ;
Erjaee, G. H. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (10) :4079-4088