INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES

被引:76
|
作者
Barlow, M. T. [1 ]
Deuschel, J-D. [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 01期
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Random conductance model; heat kernel; invariance principle; ergodic; corrector; PARABOLIC HARNACK INEQUALITY; BOUNDED RANDOM CONDUCTANCES; REVERSIBLE MARKOV-PROCESSES; PERCOLATION CLUSTERS; RANDOM-WALKS; LIMIT-THEOREM; HEAT KERNELS; TRAP MODELS; GRAPHS; ENVIRONMENTS;
D O I
10.1214/09-AOP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a continuous time random walk X in an environment of i.i.d. random conductances mu(e) is an element of [1, infinity). We obtain heat kernel bounds and prove a quenched invariance principle for X. This holds even when E mu(e) = infinity.
引用
收藏
页码:234 / 276
页数:43
相关论文
共 50 条