首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES
被引:76
作者
:
Barlow, M. T.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Barlow, M. T.
[
1
]
Deuschel, J-D.
论文数:
0
引用数:
0
h-index:
0
机构:
Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Deuschel, J-D.
[
2
]
机构
:
[1]
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2]
Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
来源
:
ANNALS OF PROBABILITY
|
2010年
/ 38卷
/ 01期
基金
:
加拿大自然科学与工程研究理事会;
英国工程与自然科学研究理事会;
关键词
:
Random conductance model;
heat kernel;
invariance principle;
ergodic;
corrector;
PARABOLIC HARNACK INEQUALITY;
BOUNDED RANDOM CONDUCTANCES;
REVERSIBLE MARKOV-PROCESSES;
PERCOLATION CLUSTERS;
RANDOM-WALKS;
LIMIT-THEOREM;
HEAT KERNELS;
TRAP MODELS;
GRAPHS;
ENVIRONMENTS;
D O I
:
10.1214/09-AOP481
中图分类号
:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号
:
020208 ;
070103 ;
0714 ;
摘要
:
We study a continuous time random walk X in an environment of i.i.d. random conductances mu(e) is an element of [1, infinity). We obtain heat kernel bounds and prove a quenched invariance principle for X. This holds even when E mu(e) = infinity.
引用
收藏
页码:234 / 276
页数:43
相关论文
未找到相关数据