INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES

被引:76
|
作者
Barlow, M. T. [1 ]
Deuschel, J-D. [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 01期
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Random conductance model; heat kernel; invariance principle; ergodic; corrector; PARABOLIC HARNACK INEQUALITY; BOUNDED RANDOM CONDUCTANCES; REVERSIBLE MARKOV-PROCESSES; PERCOLATION CLUSTERS; RANDOM-WALKS; LIMIT-THEOREM; HEAT KERNELS; TRAP MODELS; GRAPHS; ENVIRONMENTS;
D O I
10.1214/09-AOP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a continuous time random walk X in an environment of i.i.d. random conductances mu(e) is an element of [1, infinity). We obtain heat kernel bounds and prove a quenched invariance principle for X. This holds even when E mu(e) = infinity.
引用
收藏
页码:234 / 276
页数:43
相关论文
共 50 条
  • [1] Invariance principle for the random conductance model with dynamic bounded conductances
    Andres, Sebastian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 352 - 374
  • [2] Invariance principle for the random conductance model
    S. Andres
    M. T. Barlow
    J.-D. Deuschel
    B. M. Hambly
    Probability Theory and Related Fields, 2013, 156 : 535 - 580
  • [3] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580
  • [4] Quenched invariance principle for a long-range random walk with unbounded conductances
    Zhang, Zhongyang
    Zhang, Lixin
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 921 - 952
  • [5] INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL IN A DEGENERATE ERGODIC ENVIRONMENT
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    ANNALS OF PROBABILITY, 2015, 43 (04): : 1866 - 1891
  • [6] QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS AMONG RANDOM DEGENERATE CONDUCTANCES
    Bella, Peter
    Schaffner, Mathias
    ANNALS OF PROBABILITY, 2020, 48 (01): : 296 - 316
  • [7] An invariance principle for one-dimensional random walks among dynamical random conductances
    Biskup, Marek
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [8] Invariance principle for symmetric diffusions in a degenerate and unbounded stationary and ergodic random medium
    Chiarini, Alberto
    Deuschel, Jean-Dominique
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1535 - 1563
  • [9] Quenched Invariance Principles for Random Walks with Random Conductances
    P. Mathieu
    Journal of Statistical Physics, 2008, 130 : 1025 - 1046
  • [10] Quenched invariance principles for random walks with random conductances
    Mathieu, P.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 1025 - 1046